

Date: August 13, 2018

SpiraTest / SpiraTeam / SpiraPlan | Automated Unit Testing

Integration & User Guide

Inflectra Corporation

Page 1 of 65 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Contents

1. Introduction 1

2. Integrating with NUnit 2

3. Integrating with JUnit 9

4. Integrating with TestNG 21

5. Integrating with Selenium 28

6. Integrating with PyUnit 32

7. Integrating with PyTest 36

8. Integrating with MS-Test 38

9. Integrating with Ruby Test::Unit . 44

10. Integrating with Perl TAP 48

11. Integrating with PHPUnit 52

12. Integrating UnitJS & NodeJS 59

1. Introduction

SpiraTest® provides an integrated, holistic

Quality Assurance (QA) management solution

that manages requirements, tests and incidents

in one environment, with complete traceability

from inception to completion.

SpiraTeam® is an integrated Application

Lifecycle Management (ALM) system that

manages your project's requirements, releases,

test cases, issues and tasks in one unified

environment. SpiraTeam® contains all of the

features provided by SpiraTest® - our highly

acclaimed quality assurance system and

SpiraPlan® - our agile-enabled project

management solution.

This guide outlines how to use either SpiraTest®

or SpiraTeam® in conjunction with a variety of

automated unit testing tools. This guide

assumes that the reader is familiar with both

SpiraTest/SpiraTeam and the appropriate

automated unit testing tool. For information

regarding how to use SpiraTest, please refer to

the SpiraTest User Manual.

Note: This guide does not cover use of the Spira

RemoteLaunch™ automated testing system that

can be used to remotely schedule and launch

automated functional and load tests. For

information on using Spira RemoteLaunch™

please refer to the Spira RemoteLaunch User

Guide.

Page 2 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

2. Integrating with NUnit

The installation directions for the NUnit 3 unit testing tool are covered in sections 2.1-2.2 while NUnit 2.x

is covered in sections 2.3-2.4

2.1. Installing the NUnit 3 Add-In

This section outlines how to use SpiraTest/SpiraTeam/SpiraPlan (hereafter referred to as SpiraPlan) in

conjunction with NUnit 3 and above. With this add-in, you can run automated tests against a .NET

application and have the results recorded inside SpiraPlan as a test run. This guide assumes that you

already have a working installation of SpiraTest/Team/Plan installed v5.0 or later. If you have an earlier

version of SpiraPlan, you need to upgrade to at least v5.0 before trying to use this add-in. Additionally,

you must have at least version 3.0 of NUnit Console installed. If you have an earlier version, you can visit

www.nunit.org to obtain the latest version.

To obtain the add-in, go to www.inflectra.com/SpiraPlan/Downloads.aspx and download the NUnit add-in

zipfile. Extract the archive and copy SpiraTestNUnitAddIn.dll and Newtonsoft.Json.dll into your installation

of the NUnit Console Runner (typically .\packages\NUnit.ConsoleRunner\tools). Once they’ve been

copied, edit the .addins file (typically nunit.nuget.addins) and add SpiraTestNUnitAddIn.dll on a new line

in the file. If you’ve followed all the steps correctly, the SpiraPlan NUnit add-in should now be properly

installed.

2.2 Using NUnit 3 with SpiraTest

For this example, we will be using the following sample test fixture:

using NUnit.Framework;

namespace SampleTestSuite
{
 [TestFixture]
 class SampleTest
 {
 int One, Two;
 [SetUp]
 protected void SetUp()
 {
 One = 1;
 Two = 2;
 }
 [Test]
 public void TestAdd()
 {
 int Result = One + Two;
 //will succeed
 Assert.AreEqual(Result, 3);
 }
 [Test]
 public void TestMultiply()
 {
 int Result = One * Two;
 //will fail
 Assert.AreEqual(Result, 3);
 }
 [Test]
 public void TestConcat()
 {

http://www.nunit.org/
http://www.inflectra.com/SpiraPlan/Downloads.aspx

Page 3 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 string Result = string.Concat(One, Two);
 //will fail
 Assert.AreEqual(Result, "21");
 }
 }
}

In your test root directory (the directory with your .nunit file), create a new file called SpiraConfig.json, and

populate it like so:

{
 "credentials": {
 "url": "localhost/SpiraPlan",
 "username": "fredbloggs",
 "token": "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}",
 "project_id": 1,

 "release_id": 5,
 "test_set_id": 1
 },
 "test_cases": {
 "default": 20,
 "TestMultiply": 22
 }
}

For the plugin to work, you must have both settings groups (credentials and test_cases) with the following
in the credentials group:

 url – The base url to your SpiraPlan installation, without a ‘/’ at the end.

 username – The username you use to sign into SpiraTest.

 token – Your RSS Token. Found in your profile page as the “RSS Token” field, you must have

RSS Feeds enabled for this to work.

 project_id – The ID of the project you would like the test runs to be sent to

 release_id – OPTIONAL – Use if you would like to associate the test run with a release.

 test_set_id – OPTIONAL – Use if you would like to associate the test run with a test set.

Under the test_cases group, put the following:

 default – The default test case ID for functions without an assigned test case

 <method name> - Used to override the default setting for a method’s test case ID in SpiraPlan.

Only include the method name, without the parentheses.

Once you run your tests with the NUnit Console Runner, you should see the results in SpiraPlan:

Clicking on one of the test runs will show you the results:

Page 4 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations… You are now able to run NUnit automated tests and have the results be recorded

within SpiraPlan. The sample test fixture SampleTest.cs is provided with the installation.

2.3. Installing the NUnit 2.x Add-In

This section outlines how to install the SpiraTest Add-In for NUnit onto a workstation so that you can then

run automated NUnit tests against a .NET application and have the results be recorded as test runs

inside SpiraTest. It assumes that you already have a working installation of SpiraTest v2.2 or later. If you

have an earlier version of SpiraTest you will need to upgrade to at least v2.2 before trying to use this add-

in. You will also need to have either version v2.5.5 or v2.6.3 of NUnit, since there are two versions of the

add-in that have been compiled with the v2.5.5 and v2.6.3 NUnit APIs. If you are using a different version,

please visit www.nunit.org to obtain the appropriate version (2.5.5 or 2.6.3).

To obtain the version of the add-in that is compatible with your version of SpiraTest, you simply need to

go to http://www.inflectra.com/SpiraTest/Downloads.aspx or

http://www.inflectra.com/SpiraTeam/Downloads.aspx and download the NUnit Add-In zipfile.

Once you have obtained the NUnit Zipfile from our website, you should extract all the files from zip

archive into a temporary folder on your computer (e.g. C:\Temp).

Next, you should copy the add-in libraries to the folder NUnit expects to find them in. First, if you are

running any instances of the NUnit GUI, close them. Then, copy the SpiraTestNUnitAddIn.dll

assembly from its location in the temporary folder to the NUnit Add-In folder (typically C:\Program

Files\NUnit 2.5.5\bin\net-2.0\addins).

Now you can restart the NUnit GUI application. To check that the add-in was loaded successfully, click on

Tools > Addins… to bring up the list of loaded add-ins:

http://www.nunit.org/
http://www.inflectra.com/SpiraTest/Downloads.aspx
http://www.inflectra.com/SpiraTeam/Downloads.aspx

Page 5 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

You should see an entry marked “SpiraTest Addin” listed with its detailed description and status “Loaded”.

If this does not happen, try closing and reopening NUnit.

2.4. Using NUnit 2.x with SpiraTest

The typical code structure for an NUnit test fixture coded in C# is as follows:

using System;

using NUnit.Framework;

namespace Inflectra.SpiraTest.AddOns.SpiraTestNUnitAddIn.SampleTestSuite

{

 /// <summary>

 /// Sample test fixture that tests the NUnit SpiraTest integration

 /// </summary>

 [TestFixture]

 public class SampleTestFixture

 {

 [SetUp]

 public void Init()

 {

 //Do Nothing

 }

 /// <summary>

 /// Sample test that asserts a failure

 /// </summary>

 [Test]

 public void _01_SampleFailure()

 {

 //Failure Assertion

 Assert.AreEqual (1, 0);

 }

 /// <summary>

 /// Sample test that succeeds

 /// </summary>

 [Test]

 public void _02_SamplePass()

 {

 //Successful assertion

Page 6 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 Assert.AreEqual (1, 1);

 }

 /// <summary>

 /// Sample test that fails

 /// </summary>

 [Test]

 public void _03_SampleIgnore()

 {

 //Failure Assertion

 Assert.AreEqual (1, 0);

 }

 }

}

The .NET class is marked as an NUnit test fixture by applying the [TestFixture] attribute to the class as a

whole, and the [Test] attribute to each of the test assertion methods individually – highlighted in yellow

above. When you open up the class in NUnit and click the <Run> button it loads all the test classes

marked with [TestFixture] and executes all the methods marked with [Test] in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and NUnit moves on to the next test method.

So, to use SpiraTest with NUnit, each of the test cases written for execution by NUnit needs to have a

corresponding test case in SpiraTest. These can be either existing test cases that have manual test steps

or they can be new test cases designed specifically for automated testing and therefore have no defined

test steps. In either case, the changes that need to be made to the NUnit test fixture for SpiraTest to

record the NUnit test run are illustrated below:

using System;

using NUnit.Framework;

using Inflectra.SpiraTest.AddOns.SpiraTestNUnitAddIn.SpiraTestFramework;

namespace Inflectra.SpiraTest.AddOns.SpiraTestNUnitAddIn.SampleTestSuite

{

 /// <summary>

 /// Sample test fixture that tests the NUnit SpiraTest integration

 /// </summary>

 [

 TestFixture,

 SpiraTestConfiguration (

 "http://<server name>/SpiraTest",

 "<username>",

 "<password>",

 <project id>,

 <release id>,

 <test set id>,

 <runner name>

)

]

 public class SampleTestFixture

 {

 [SetUp]

 public void Init()

 {

 //Do Nothing

 }

 /// <summary>

 /// Sample test that asserts a failure

Page 7 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 /// </summary>

 [

 Test,

 SpiraTestCase (<test case id>)

]

 public void _01_SampleFailure()

 {

 //Failure Assertion

 Assert.AreEqual (1, 0);

 }

 /// <summary>

 /// Sample test that succeeds

 /// </summary>

 [

 Test,

 SpiraTestCase (<test case id>))

]

 public void _02_SamplePass()

 {

 //Successful assertion

 Assert.AreEqual (1, 1);

 }

 /// <summary>

 /// Sample test that does not log to SpiraTest

 /// </summary>

 [

 Test

]

 public void _03_SampleIgnore()

 {

 //Failure Assertion

 Assert.AreEqual (1, 0);

 }

 }

}

The overall class is marked with a new [SpiraTestConfiguration] attribute that contains the following

pieces of information needed to access the SpiraTest test repository:

 URL - The URL to the instance of SpiraTest being accessed. This needs to start with http:// or

https://.

 User Name - A valid username for the instance of SpiraTest.

 Password - A valid password for the instance of SpiraTest.

 Project Id - The ID of the project (this can be found on the project homepage in the “Project

Overview” section)

 Release Id (Optional) - The ID of the release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to specify a

release, just use the value -1.

 Test Set Id (Optional) – The ID of the test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to specify a test set,

just use the value -1. If you choose a test set that is associated with a release, then you don’t

need to explicitly set a release id (i.e. just use -1). However if you do set a release value, it will

override the value associated with the test set.

Page 8 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 Runner Name – This should be set to NUnit so that the test results recorded in SpiraTest have

the name ‘NUnit’ associated with them.

In addition, each of the individual test methods needs to be mapped to a specific test case within

SpiraTest. This is done by adding a [SpiraTestCase] attribute to the test method together with the ID of

the corresponding test case in SpiraTest. The Test Case ID can be found on the test cases list page (click

the “Test Cases” tab).

For these attributes to be available in your test fixture, you also need to add a reference to the

SpiraTestFramework.dll assembly. This assembly can be found in the temporary folder that you extracting

the add-in to. It is recommended that you move this file from the temporary folder into a permanent folder

located within your .NET project.

Now all you need to do is compile your code, launch NUnit, run the test fixtures as you would normally do,

and when you view the test cases in SpiraTest, you should see an NUnit automated test run displayed in

the list of executed test runs:

Clicking on one of the NUnit test runs will bring up a screen that provides information regarding what

NUnit test method failed, what the error was, together with the associated code stack-trace:

Congratulations… You are now able to run NUnit automated tests and have the results be recorded

within SpiraTest. The sample test fixture SampleTestSuite.cs is provided with the installation.

Page 9 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

3. Integrating with JUnit

The directions for using JUnit 5 are 3.1-3.2, with the JUnit 4 directions being 3.3-3.4

3.1. Installing the JUnit 5 Extension

This section outlines how to install the SpiraTest Extension for JUnit onto a workstation so that you can

then run automated JUnit tests against a Java application and have the results be recorded as test runs

inside SpiraTest. It assumes that you already have a working installation of SpiraTest v3.0 or later. If you

have an earlier version of SpiraTest you will need to upgrade to at least v3.0 before trying to use this

extension. You will also need to have at least version 5.0 of Junit. If you are using an earlier version,

please visit www.junit.org to obtain the latest version.

To obtain the version of the JUnit extension that is compatible with your version of SpiraTest, you simply

need to log-in as a project-level administrator to SpiraTest, go to the Administration home page and

download the JUnit Extension compressed archive (.zip). This process is described in the SpiraTest

Administration Guide in more detail.

The JUnit extension is provided as a compressed zipfile that includes both the binaries (packaged as a

JAR-file) and the source code (stored in a folder structure that mirrors the Java classpath). The JAR-file

binary was compiled for use on a Windows x86 platform, other platforms (e.g. Linux) will require you to

compile the Java source files into the appropriate Java classfiles before using the extension. The rest of

this section will assume that you are using the pre-compiled JAR-file.

Once you have downloaded the Zip archive, you need to uncompress it into a folder of your choice on

your local system. Assuming that you uncompressed it to the C:\Program Files\JUnit Extension

folder, you should have the following folder structure created:

C:\Program Files\JUnit Extension

C:\Program Files\JUnit Extension\com

C:\Program Files\JUnit Extension\com\inflectra

C:\Program Files\JUnit Extension\com\inflectra\spiratest

C:\Program Files\JUnit Extension\com\inflectra\spiratest\addons

C:\Program Files\JUnit Extension\com\inflectra\spiratest\addons\junitextension

C:\Program Files\JUnit Extension\com\inflectra\spiratest\addons\junitextension\samples

The JAR-file is located in the root folder, the source-code for the extension can be found in the

“junitextension” subfolder, and the sample test fixture can be found in the “samples” subfolder.

Now to use the extension within your test cases, you need to first make sure that the JAR-file is added to

the Java classpath. The method for doing this is dependent on the platform you’re using, so please refer

to FAQ on www.junit.org for details on the appropriate method for your platform. As an example, on a

Windows platform, the JAR-file would be added to the classpath by typing the following:

set CLASSPATH=%CLASSPATH%; C:\Program Files\JUnit Extension\JUnitExtension.jar

Once you have completed this step, you are now ready to begin using your JUnit test fixtures with

SpiraTest.

http://www.junit.org/
http://www.junit.org/

Page 10 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

2.2. Using JUnit 5 with SpiraTest

The typical code structure for a JUnit test fixture coded in Java is as follows:

package com.inflectra.spiratest.addons.junitextension.samples;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertTrue;

/**

 * Some simple tests using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 4.0.0

 */

public class SimpleTest {

 protected int fValue1;

 protected int fValue2;

 /**

 * Sets up the unit test

 */

 @BeforeEach

 public void setUp() {

 fValue1 = 2;

 fValue2 = 3;

 }

 /**

 * Tests the addition of the two values

 */

 @Test

 public void testAdd() {

 double result = fValue1 + fValue2;

 // forced failure result == 5

 assertTrue(result == 6);

 }

 /**

 * Tests division by zero

 */

 @Test

 public void testDivideByZero() {

 int zero = 0;

 int result = 8 / zero;

 }

 /**

 * Tests two equal values

 */

 @Test

 public void testEquals() {

 assertEquals(12, 12);

 assertEquals(12L, 12L);

 assertEquals(new Long(12), new Long(12));

 assertEquals(12, 13, "Size");

 assertEquals(12.0, 11.99, 0.0, "Capacity");

 }

Page 11 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 /**

 * Tests success

 */

 @Test

 public void testSuccess() {

 //Successful test

 assertEquals(12, 12);

 }

}

The Java class is marked as a JUnit test fixture by applying the @BeforeEach attribute to the setup

method, and the @Test attribute to each of the test assertion methods individually – highlighted in yellow

above. When you open up the class in a JUnit runner or execute from the command line it loads all the

test classes and executes all the methods marked with @Test in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and JUnit moves on to the next test method.

So, to use SpiraTest with JUnit, each of the test cases written for execution by JUnit needs to have a

corresponding test case in SpiraTest. These can be either existing test cases that have manual test steps

or they can be new test cases designed specifically for automated testing and therefore have no defined

test steps. In either case, the changes that need to be made to the JUnit test fixture for SpiraTest to

record the JUnit test run are illustrated below:

package com.inflectra.spiratest.addons.junitextension.samples;

import com.inflectra.spiratest.addons.junitextension.*;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertTrue;

/**

 * Some simple tests using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 4.0.0

 */

@SpiraTestConfiguration(

 //following are REQUIRED

 url = "http://doctor/SpiraPlan",

 login = "fredbloggs",

 rssToken = "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}",

 projectId = 1,

 //following are OPTIONAL

 releaseId = 7,

 testSetId = 1

)

public class SimpleTest {

 protected int fValue1;

 protected int fValue2;

 /**

 * Sets up the unit test

Page 12 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 */

 @BeforeEach

 public void setUp() {

 fValue1 = 2;

 fValue2 = 3;

 }

 /**

 * Tests the addition of the two values

 */

 @Test

 @SpiraTestCase(testCaseId = 22)

 public void testAdd() {

 double result = fValue1 + fValue2;

 // forced failure result == 5

 assertTrue(result == 6);

 }

 /**

 * Tests division by zero

 */

 @Test

 @SpiraTestCase(testCaseId = 22)

 public void testDivideByZero() {

 int zero = 0;

 int result = 8 / zero;

 }

 /**

 * Tests two equal values

 */

 @Test

 @SpiraTestCase(testCaseId = 22)

 public void testEquals() {

 assertEquals(12, 12);

 assertEquals(12L, 12L);

 assertEquals(new Long(12), new Long(12));

 assertEquals(12, 13, "Size");

 assertEquals(12.0, 11.99, 0.0, "Capacity");

 }

 /**

 * Tests success

 */

 @Test

 @SpiraTestCase(testCaseId = 22)

 public void testSuccess() {

 //Successful test

 assertEquals(12, 12);

 }

}

The overall class is marked with a new @SpiraTestConfiguration attribute that contains the following

pieces of information needed to access the SpiraTest test repository:

 URL - The URL to the instance of SpiraTest being accessed. This needs to start with http:// or

https://.

 Login - A valid username for the instance of SpiraTest.

 RSS Token – Found in your profile page, RSS Feeds must be enabled to work.

Page 13 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 Project Id - The ID of the project (this can be found on the project homepage in the “Project

Overview” section)

 Release Id (Optional) - The ID of the release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to specify a

release, just use the value -1.

 Test Set Id (Optional) – The ID of the test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to specify a test set,

just use the value -1. If you choose a test set that is associated with a release, then you don’t

need to explicitly set a release id (i.e. just use -1). However if you do set a release value, it will

override the value associated with the test set.

In addition, each of the individual test methods needs to be mapped to a specific test case within

SpiraTest. This is done by adding a @SpiraTestCase attribute to the test method together with the ID of

the corresponding test case in SpiraTest. The Test Case ID can be found on the test cases list page (click

the “Test Cases” tab).

For these attributes to be available in your test fixture, you also need to add a reference to the

com.inflectra.spiratest.addons.junitextension package. This package is bundled within the supplied JAR-

file library for Windows, and can be compiled from the provided source .java files on other platforms.

Now all you need to do is compile your code and then launch JUnit by executing the test fixture through

the command line (or through your choice of IDE, e.g. Eclipse). E.g. for our sample test, you would use

the following command:

java com.inflectra.spiratest.addons.junitextension.samples.SimpleTest

Once the test has run, you can view the test cases in SpiraTest, you should see a JUnit automated test

run displayed in the list of executed test runs:

Clicking on one of the JUnit test runs will bring up a screen that provides information regarding what JUnit

test method failed, what the error was, together with the associated code stack-trace:

Page 14 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations… You are now able to run JUnit automated tests and have the results be recorded within

SpiraTest. The sample test fixture SimpleText.java is provided with the installation.

3.3. Installing the JUnit 4 Extension

This section outlines how to install the SpiraTest Extension for JUnit onto a workstation so that you can

then run automated JUnit tests against a Java application and have the results be recorded as test runs

inside SpiraTest. It assumes that you already have a working installation of SpiraTest v3.0 or later. If you

have an earlier version of SpiraTest you will need to upgrade to at least v3.0 before trying to use this

extension. You will also need to have version 4.0 of JUnit. To use version 5.0 of JUnit, please visit section

3.1.

To obtain the version of the JUnit extension that is compatible with your version of SpiraTest, you simply

need to log-in as a project-level administrator to SpiraTest, go to the Administration home page and

download the JUnit Extension compressed archive (.zip). This process is described in the SpiraTest

Administration Guide in more detail.

The JUnit extension is provided as a compressed zipfile that includes both the binaries (packaged as a

JAR-file) and the source code (stored in a folder structure that mirrors the Java classpath). The JAR-file

binary was compiled for use on a Windows x86 platform, other platforms (e.g. Linux) will require you to

compile the Java source files into the appropriate Java classfiles before using the extension. The rest of

this section will assume that you are using the pre-compiled JAR-file.

Once you have downloaded the Zip archive, you need to uncompress it into a folder of your choice on

your local system. Assuming that you uncompressed it to the C:\Program Files\JUnit Extension

Page 15 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

folder, you should have the following folder structure created:

C:\Program Files\JUnit Extension

C:\Program Files\JUnit Extension\com

C:\Program Files\JUnit Extension\com\inflectra

C:\Program Files\JUnit Extension\com\inflectra\spiratest

C:\Program Files\JUnit Extension\com\inflectra\spiratest\addons

C:\Program Files\JUnit Extension\com\inflectra\spiratest\addons\junitextension

C:\Program Files\JUnit Extension\com\inflectra\spiratest\addons\junitextension\samples

The JAR-file is located in the root folder, the source-code for the extension can be found in the

“junitextension” subfolder, and the sample test fixture can be found in the “samples” subfolder.

Now to use the extension within your test cases, you need to first make sure that the JAR-file is added to

the Java classpath. The method for doing this is dependent on the platform you’re using, so please refer

to FAQ on www.junit.org for details on the appropriate method for your platform. As an example, on a

Windows platform, the JAR-file would be added to the classpath by typing the following:

set CLASSPATH=%CLASSPATH%; C:\Program Files\JUnit Extension\JUnitExtension.jar

Once you have completed this step, you are now ready to begin using your JUnit test fixtures with

SpiraTest.

2.4. Using JUnit 4 with SpiraTest

The typical code structure for a JUnit test fixture coded in Java is as follows:

package com.inflectra.spiratest.addons.junitextension.samples;

import static org.junit.Assert.*;

import junit.framework.JUnit4TestAdapter;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.*;

import org.junit.runner.notification.*;

import java.util.*;

/**

 * Some simple tests using JUnit 4

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

public class SimpleTest

{

 protected int fValue1;

 protected int fValue2;

 /**

 * Sets up the unit test

 */

 @Before

 public void setUp()

 {

 fValue1= 2;

 fValue2= 3;

 }

 /**

 * Tests the addition of the two values

http://www.junit.org/

Page 16 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 */

 @Test

 public void testAdd()

 {

 double result = fValue1 + fValue2;

 // forced failure result == 5

 assertTrue (result == 6);

 }

 /**

 * Tests division by zero

 */

 @Test

 public void testDivideByZero()

 {

 int zero = 0;

 int result = 8 / zero;

 result++; // avoid warning for not using result

 }

 /**

 * Tests two equal values

 */

 @Test

 public void testEquals()

 {

 assertEquals(12, 12);

 assertEquals(12L, 12L);

 assertEquals(new Long(12), new Long(12));

 assertEquals("Size", 12, 13);

 assertEquals("Capacity", 12.0, 11.99, 0.0);

 }

 /**

 * Tests success

 */

 @Test

 public void testSuccess()

 {

 //Successful test

 assertEquals(12, 12);

 }

 /**

 * Entry point for command line execution

 *

 * @param args The command line arguments

 */

 public static void main (String[] args)

 {

 //Instantiate the JUnit core

 JUnitCore core = new JUnitCore();

 //Finally run the test fixture

 core.run (SimpleTest.class);

 }

 /**

 * Entry point for JUnit 4.x runners

 *

 * @return Handle to the test framework

 */

Page 17 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 public static junit.framework.Test suite()

 {

 return new JUnit4TestAdapter(SimpleTest.class);

 }

}

The Java class is marked as a JUnit test fixture by applying the @Before attribute to the setup method,

and the @Test attribute to each of the test assertion methods individually – highlighted in yellow above.

When you open up the class in a JUnit runner or execute from the command line it loads all the test

classes and executes all the methods marked with @Test in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and JUnit moves on to the next test method.

So, to use SpiraTest with JUnit, each of the test cases written for execution by JUnit needs to have a

corresponding test case in SpiraTest. These can be either existing test cases that have manual test steps

or they can be new test cases designed specifically for automated testing and therefore have no defined

test steps. In either case, the changes that need to be made to the JUnit test fixture for SpiraTest to

record the JUnit test run are illustrated below:

package com.inflectra.spiratest.addons.junitextension.samples;

import static org.junit.Assert.*;

import junit.framework.JUnit4TestAdapter;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.*;

import org.junit.runner.notification.*;

import com.inflectra.spiratest.addons.junitextension.*;

import java.util.*;

/**

 * Some simple tests using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

@SpiraTestConfiguration(

 url="http://sandman/SpiraTest",

 login="fredbloggs",

 password="fredbloggs",

 projectId=1,

 releaseId=1,

 testSetId=1

)

public class SimpleTest

{

 protected int fValue1;

 protected int fValue2;

 /**

 * Sets up the unit test

 */

 @Before

 public void setUp()

 {

 fValue1= 2;

Page 18 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 fValue2= 3;

 }

 /**

 * Tests the addition of the two values

 */

 @Test

 @SpiraTestCase(testCaseId=5)

 public void testAdd()

 {

 double result = fValue1 + fValue2;

 // forced failure result == 5

 assertTrue (result == 6);

 }

 /**

 * Tests division by zero

 */

 @Test

 @SpiraTestCase(testCaseId=5)

 public void testDivideByZero()

 {

 int zero = 0;

 int result = 8 / zero;

 result++; // avoid warning for not using result

 }

 /**

 * Tests two equal values

 */

 @Test

 @SpiraTestCase(testCaseId=6)

 public void testEquals()

 {

 assertEquals(12, 12);

 assertEquals(12L, 12L);

 assertEquals(new Long(12), new Long(12));

 assertEquals("Size", 12, 13);

 assertEquals("Capacity", 12.0, 11.99, 0.0);

 }

 /**

 * Tests success

 */

 @Test

 @SpiraTestCase(testCaseId=6)

 public void testSuccess()

 {

 //Successful test

 assertEquals(12, 12);

 }

 /**

 * Entry point for command line execution

 *

 * @param args The command line arguments

 */

 public static void main (String[] args)

 {

 //Instantiate the JUnit core

 JUnitCore core = new JUnitCore();

 //Add the custom SpiraTest listener

Page 19 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 core.addListener(new SpiraTestListener());

 //Finally run the test fixture

 core.run (SimpleTest.class);

 }

 /**

 * Entry point for JUnit 4.x runners

 *

 * @return Handle to the test framework

 */

 public static junit.framework.Test suite()

 {

 return new JUnit4TestAdapter(SimpleTest.class);

 }

}

The overall class is marked with a new @SpiraTestConfiguration attribute that contains the following

pieces of information needed to access the SpiraTest test repository:

 URL - The URL to the instance of SpiraTest being accessed. This needs to start with http:// or

https://.

 Login - A valid username for the instance of SpiraTest.

 Password - A valid password for the instance of SpiraTest.

 Project Id - The ID of the project (this can be found on the project homepage in the “Project

Overview” section)

 Release Id (Optional) - The ID of the release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to specify a

release, just use the value -1.

 Test Set Id (Optional) – The ID of the test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to specify a test set,

just use the value -1. If you choose a test set that is associated with a release, then you don’t

need to explicitly set a release id (i.e. just use -1). However if you do set a release value, it will

override the value associated with the test set.

In addition, each of the individual test methods needs to be mapped to a specific test case within

SpiraTest. This is done by adding a @SpiraTestCase attribute to the test method together with the ID of

the corresponding test case in SpiraTest. The Test Case ID can be found on the test cases list page (click

the “Test Cases” tab).

For these attributes to be available in your test fixture, you also need to add a reference to the

com.inflectra.spiratest.addons.junitextension package. This package is bundled within the supplied JAR-

file library for Windows, and can be compiled from the provided source .java files on other platforms.

Now all you need to do is compile your code and then launch JUnit by executing the test fixture through

the command line (or through your choice of IDE, e.g. Eclipse). E.g. for our sample test, you would use

the following command:

java com.inflectra.spiratest.addons.junitextension.samples.SimpleTest

Once the test has run, you can view the test cases in SpiraTest, you should see a JUnit automated test

run displayed in the list of executed test runs:

Page 20 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Clicking on one of the JUnit test runs will bring up a screen that provides information regarding what JUnit

test method failed, what the error was, together with the associated code stack-trace:

Congratulations… You are now able to run JUnit automated tests and have the results be recorded within

SpiraTest. The sample test fixture SimpleText.java is provided with the installation.

Page 21 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

4. Integrating with TestNG

4.1. Installing the TestNG Listener

This section outlines how to install the SpiraTest Listener for TestNG onto a workstation so that you can

then run automated TestNG unit tests against a Java application and have the results be recorded as test

runs inside SpiraTest. It assumes that you already have a working installation of SpiraTest v3.0 or later. If

you have an earlier version of SpiraTest you will need to upgrade to at least v3.0 before trying to use this

listener. You will also need to have at least version 1.0 of TestNG running under JDK 1.5 or later, since

earlier versions do not have support for annotations and custom listeners. If you are using an earlier

version, please visit www.testng.org to obtain the latest version.

To obtain the latest version of the TestNG listener, you simply need to log-in as a project-level

administrator to SpiraTest, go to the Administration home page and download the SpiraTest TestNG

Listener compressed archive (.zip) from the section that lists downloads and add-ons. This process is

described in the SpiraTest Administration Guide in more detail.

The TestNG listener is provided as a compressed zipfile that includes both the binaries (packaged as a

JAR-file) and the source code (stored in a folder structure that mirrors the Java classpath). The JAR-file

binary was compiled for use on a Windows x86 platform, other platforms (e.g. Linux) will require you to

compile the Java source files into the appropriate Java classfiles before using the extension. The rest of

this section will assume that you are using the pre-compiled JAR-file.

Once you have downloaded the Zip archive, you need to uncompress it into a folder of your choice on

your local system. Assuming that you uncompressed it to the C:\Program

Files\SpiraTestListener folder, you should have the following folder structure created:

C:\Program Files\SpiraTestListener

C:\Program Files\SpiraTestListener\com

C:\Program Files\SpiraTestListener\com\inflectra

C:\Program Files\SpiraTestListener\com\inflectra\spiratest

C:\Program Files\SpiraTestListener\com\inflectra\spiratest\addons

C:\Program Files\SpiraTestListener\com\inflectra\spiratest\addons\testnglistener

C:\Program Files\SpiraTestListener\Extension\com\inflectra\spiratest\addons\testnglistener\samples

The JAR-file is located in the root folder, the source-code for the extension can be found in the

“testnglistener” subfolder, and the sample test fixture can be found in the “samples” subfolder.

Now to use the listener within your test cases, you need to first make sure that the JAR-file is added to

the Java classpath. The method for doing this is dependent on the platform you’re using, so please refer

to FAQ on www.testngorg for details on the appropriate method for your platform. As an example, on a

Windows platform, the JAR-file would be added to the classpath by typing the following:

set CLASSPATH=%CLASSPATH%; C:\Program Files\SpiraTestListener\TestNGListener.jar

Once you have completed this step, you are now ready to begin using your TestNG test fixtures with

SpiraTest.

http://www.testng.org/
http://www.testngorg/

Page 22 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

2.2. Using TestNG with SpiraTest

The typical code structure for a TestNG test fixture coded in Java is as follows:

package com.inflectra.spiratest.addons.testnglistener.samples;

import org.testng.annotations.*;

import static org.testng.AssertJUnit.*;

import java.util.*;

/**

 * Some simple tests using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

@Test(groups={"unittest"})

public class SimpleTest

{

 protected int fValue1;

 protected int fValue2;

 /**

 * Sets up the unit test

 */

 @BeforeClass

 public void setUp()

 {

 fValue1= 2;

 fValue2= 3;

 }

 /**

 * Tests the addition of the two values

 */

 @Test(groups={"unittest"})

 public void testAdd()

 {

 double result = fValue1 + fValue2;

 // forced failure result == 5

 assertTrue (result == 6);

 }

 /**

 * Tests division by zero

 */

 @Test(groups={"unittest"})

 public void testDivideByZero()

 {

 int zero = 0;

 int result = 8 / zero;

 result++; // avoid warning for not using result

 }

 /**

 * Tests two equal values

 */

 @Test(groups={"unittest"})

 public void testEquals()

 {

 assertEquals(12, 12);

 assertEquals(12L, 12L);

 assertEquals(new Long(12), new Long(12));

 assertEquals("Size", 12, 13);

 assertEquals("Capacity", 12.0, 11.99, 0.0);

 }

 /**

Page 23 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 * Tests success

 */

 @Test(groups={"unittest"})

 public void testSuccess()

 {

 //Successful test

 assertEquals(12, 12);

 }

}

The Java class is marked as a TestNG test fixture by applying the @Test attribute to the class definition,

and the @Test attribute to each of the test assertion methods individually – highlighted in yellow above. In

addition, special setup methods are marked with annotations such as @BeforeClass. When you open up

the class in a TestNG runner or execute from the command line it loads all the test classes and executes

all the methods marked with @Test in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and TestNG moves on to the next test method.

So, to use SpiraTest with TestNG, each of the test cases written for execution by TestNG needs to have

a corresponding test case in SpiraTest. These can be either existing test cases that have manual test

steps or they can be new test cases designed specifically for automated testing and therefore have no

defined test steps. In either case, the changes that need to be made to the TestNG test fixture for

SpiraTest to record the TestNG test run are illustrated below:

package com.inflectra.spiratest.addons.testnglistener.samples;

import org.testng.annotations.*;

import static org.testng.AssertJUnit.*;

import com.inflectra.spiratest.addons.testnglistener.*;

import java.util.*;

/**

 * Some simple tests using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

@SpiraTestConfiguration(

 url="http://localhost/SpiraTest",

 login="fredbloggs",

 password="fredbloggs",

 projectId=1,

 releaseId=1,

 testSetId

)

@Test(groups={"unittest"})

public class SimpleTest

{

 protected int fValue1;

 protected int fValue2;

 /**

 * Sets up the unit test

 */

 @BeforeClass

 public void setUp()

 {

 fValue1= 2;

 fValue2= 3;

 }

 /**

Page 24 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 * Tests the addition of the two values

 */

 @Test(groups={"unittest"})

 @SpiraTestCase(testCaseId=5)

 public void testAdd()

 {

 double result = fValue1 + fValue2;

 // forced failure result == 5

 assertTrue (result == 6);

 }

 /**

 * Tests division by zero

 */

 @Test(groups={"unittest"})

 @SpiraTestCase(testCaseId=5)

 public void testDivideByZero()

 {

 int zero = 0;

 int result = 8 / zero;

 result++; // avoid warning for not using result

 }

 /**

 * Tests two equal values

 */

 @Test(groups={"unittest"})

 @SpiraTestCase(testCaseId=6)

 public void testEquals()

 {

 assertEquals(12, 12);

 assertEquals(12L, 12L);

 assertEquals(new Long(12), new Long(12));

 assertEquals("Size", 12, 13);

 assertEquals("Capacity", 12.0, 11.99, 0.0);

 }

 /**

 * Tests success

 */

 @Test(groups={"unittest"})

 @SpiraTestCase(testCaseId=6)

 public void testSuccess()

 {

 //Successful test

 assertEquals(12, 12);

 }

}

The overall class is marked with a new @SpiraTestConfiguration attribute that contains the following

pieces of information needed to access the SpiraTest test repository:

 URL - The URL to the instance of SpiraTest being accessed. This needs to start with http:// or

https://

 Login - A valid username for the instance of SpiraTest.

 Password - A valid password for the instance of SpiraTest.

 Project Id - The ID of the project (this can be found on the project homepage in the “Project

Overview” section)

 Release Id (Optional) - The ID of the release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to specify a

release, just use the value -1.

Page 25 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 Test Set Id (Optional) – The ID of the test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to specify a test set,

just use the value -1. If you choose a test set that is associated with a release, then you don’t

need to explicitly set a release id (i.e. just use -1). However if you do set a release value, it will

override the value associated with the test set.

In addition, each of the individual test methods needs to be mapped to a specific test case within

SpiraTest. This is done by adding a @SpiraTestCase attribute to the test method together with the ID of

the corresponding test case in SpiraTest. The Test Case ID can be found on the test cases list page (click

the “Test Cases” tab).

For these attributes to be available in your test fixture, you also need to add a reference to the

com.inflectra.spiratest.addons.testnglistener package. This package is bundled within the supplied JAR-

file library for Windows machines, and can be compiled from the provided source .java files on other

platforms.

Now all you need to do is compile your code and then launch TestNG by executing the test fixture

through the command line (or through your choice of IDE, e.g. Eclipse) with the SpiraTest listener option

specified as a command argument. E.g. for our sample test, you would use the following command:

java

-classpath " C:\Program Files\Selenium-RC-1.0.0\selenium-remote-control-1.0.0\selenium-java-
client-driver-1.0.0\selenium-java-client-driver.jar;C:\Program

Files\SpiraTestListener\TestNGListener.jar;C:\Program Files\TestNG-5.7\testng-5.7\testng-5.7-

jdk15.jar" org.testng.TestNG

-listener com.inflectra.spiratest.addons.testnglistener.SpiraTestListener

com\inflectra\spiratest\addons\testnglistener\samples\unittests.xml

Once the test has run, you can view the test cases in SpiraTest, you should see a TestNG automated test

run displayed in the list of executed test runs:

Clicking on one of the TestNG test runs will bring up a screen that provides information regarding what

TestNG test method failed, what the error was, together with the associated code stack-trace:

Page 26 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations… You are now able to run TestNG automated tests and have the results be recorded

within SpiraTest. The sample test fixture SimpleText.java is provided with the installation.

Page 27 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Page 28 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

5. Integrating with Selenium

Selenium WebDriver is a test tool that allows you to write automated web application user interface tests

in any programming language against any HTTP website using any mainstream JavaScript-enabled

browser. Selenium WebDriver comes in two parts.

 An API or library for the web browser itself that is used to allow external applications to connect to

the web browser and instruct it to perform certain operations.

 Client libraries for various computer languages - these are referred to as ‘language bindings.

Therefore to use SpiraTest with Selenium WebDriver (hereafter referred to as just Selenium), you need to

decide which client driver you want to use, and then use the appropriate integration between SpiraTest

and that driver’s underlying platform/language. Any unit test framework listed in this guide can be used

with Selenium (in addition to just running unit tests), we have some examples below for .NET, Java and

Python.

5.1. Using the .NET Driver

To use the .NET driver for Selenium with SpiraTest, you will need to run your Selenium tests within the

context of a NUnit test fixture. The details of how to configure NUnit to operate with SpiraTest are

described in section 2 above. Once you have configured NUnit for use with SpriaTest, there is one

change that needs to be made to the SpiraTest NUnit configuration so that the Selenium tests report back

to SpiraTest as ‘Selenium’ rather than “NUnit’ so you can distinguish between them.

Supplied with the SpiraTest NUnit add-in is a sample test for using Selenium with SpiraTest:

using System;

using NUnit.Framework;

using Inflectra.SpiraTest.AddOns.SpiraTestNUnitAddIn.SpiraTestFramework;

using Selenium;

namespace SeleniumSampleTest

{

 /// <summary>

 /// Sample test fixture that tests the NUnit SpiraTest integration with the

 /// Selenium-RC .NET Driver

 /// </summary>

 [

 TestFixture,

 SpiraTestConfiguration("http://localhost/SpiraTest", "fredbloggs", "fredbloggs", 1, 1, 2,

SpiraTestConfigurationAttribute.RunnerName.Selenium)

]

 public class GoogleTest

 {

 private static ISelenium selenium;

 [SetUp]

 public void SetupTest()

 {

 //Instantiate the selenium .NET proxy

 selenium = new DefaultSelenium("localhost", 4444, "*iexplore",

"http://www.google.com");

 selenium.Start();

 }

 [TearDown]

 public void TeardownTest()

 {

 selenium.Stop();

 }

 /// <summary>

 /// Sample test that searches on Google, passes correctly

 /// </summary>

 [

Page 29 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 Test,

 SpiraTestCase (5)

]

 public void GoogleSearch()

 {

 //Opens up Google

 selenium.Open("http://www.google.com/webhp");

 //Verifies that the title matches

 Assert.AreEqual("Google", selenium.GetTitle());

 selenium.Type("q", "Selenium OpenQA");

 //Verifies that it can find the Selenium website

 Assert.AreEqual("Selenium OpenQA", selenium.GetValue("q"));

 selenium.Click("btnG");

 selenium.WaitForPageToLoad("5000");

 Assert.IsTrue(selenium.IsTextPresent("www.openqa.org"));

 Assert.AreEqual("Selenium OpenQA - Google Search", selenium.GetTitle());

 }

 }

}

The details of the sample itself are described in more detail on the Selenium website, and you can see

that we have added the SpiraTest specific attributes onto the test case and test methods to indicate that

they need to report back to SpiraTest.

However there is one change that has been made to the SpiraTestConfiguration attribute applied to the

test fixture – an extra SpiraTestConfigurationAttribute.RunnerName.Selenium parameter has been

specified. This tells the SpiraTest NUnit add-in to report the results back as being generated by Selenium

rather than NUnit.

5.2. Using the Java Driver

To use the Java driver for Selenium with SpiraTest, you will need to run your Selenium tests within the

context of a TestNG test fixture. The details of how to configure TestNG to operate with SpiraTest are

described in section 4 above. Once you have configured TestNG for use with SpriaTest, there is one

change that needs to be made to the SpiraTest TestNG configuration so that the Selenium tests report

back to SpiraTest as ‘Selenium’ rather than “TestNG’ so you can distinguish between them.

Supplied with the SpiraTest TestNG listener is a sample test for using Selenium with SpiraTest:

The details of the sample itself are described in more detail on the Selenium website, and you can see

that we have added the SpiraTest specific attributes onto the test case and test methods to indicate that

they need to report back to SpiraTest.

package com.inflectra.spiratest.addons.testnglistener.samples;

import org.testng.annotations.*;

import static org.testng.AssertJUnit.*;

import com.thoughtworks.selenium.*;

import com.inflectra.spiratest.addons.testnglistener.*;

/**

 * A sample Selenium test using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

@SpiraTestConfiguration(

url="http://localhost/SpiraTest",

login="fredbloggs",

password="fredbloggs",

projectId=1,

Page 30 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

releaseId=1,

testSetId=-1

runner=RunnerName.Selenium

)

@Test(groups={"seleniumtest"})

public class SeleniumTest

{

 private Selenium selenium;

 @BeforeClass

 public void setUp()

 {

 //Instantiate the selenium Java proxy

 String url = "http://www.google.com";

 selenium = new DefaultSelenium("localhost", 4444, "*firefox", url);

 selenium.start();

 }

 @AfterClass

 protected void tearDown()

 {

 selenium.stop();

 }

 // Sample test that searches on Google, passes correctly

 @Test(groups={"seleniumtest"})

 @SpiraTestCase(testCaseId=5)

 public void testGoogle()

 {

 //Opens up Google

 selenium.open("http://www.google.com/webhp?hl=en");

 //Verifies that the title matches

 assertEquals("Google", selenium.getTitle());

 selenium.type("q", "Selenium OpenQA");

 //Verifies that it can find the Selenium website

 assertEquals("Selenium OpenQA", selenium.getValue("q"));

 selenium.click("btnG");

 selenium.waitForPageToLoad("5000");

 assertEquals("Selenium OpenQA - Google Search", selenium.getTitle());

 }

}

However there is one change that has been made to the SpiraTestConfiguration attribute applied to the

test fixture – an extra runner=RunnerName.Selenium parameter has been specified. This tells the

SpiraTest TestNG listener to report the results back as being generated by Selenium rather than TestNG.

5.3. Using the Python Driver

To use the Python driver for Selenium with SpiraTest, you will need to run your Selenium tests within the

context of a PyUnit unit-test fixture. The details of how to configure PyUnit to operate with SpiraTest are

described in section 6 below. Once you have configured PyUnit for use with SpriaTest, there is one

change that needs to be made to the SpiraTest PyUnit configuration so that the Selenium tests report

back to SpiraTest as ‘Selenium’ rather than “PyUnit’ so you can distinguish between them.

Supplied with the SpiraTest PyUnit extension is a sample test for using Selenium with SpiraTest:

from selenium import selenium

import unittest

import sys, time

import spiratestextension

A sample Selenium test using the ability to return results back to SpiraTest

Author Inflectra Corporation

Version 2.3.0

Page 31 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

class TestSeleniumSample(unittest.TestCase):

 seleniumHost = 'localhost'

 seleniumPort = str(4444)

 browserStartCommand = "*firefox"

 browserURL = "http://www.google.com"

 def setUp(self):

 print "Using selenium server at " + self.seleniumHost + ":" + self.seleniumPort

 self.selenium = selenium(self.seleniumHost, self.seleniumPort,

self.browserStartCommand, self.browserURL)

 self.selenium.start()

 def testGoogle__4(self):

 selenium = self.selenium

 selenium.open("http://www.google.com/webhp?hl=en")

 #Verifies that the title matches

 self.assertEqual ("Google", selenium.get_title())

 selenium.type("q", "Selenium OpenQA")

 #Verifies that it can find the Selenium website

 self.assertEqual("Selenium OpenQA", selenium.get_value("q"))

 selenium.click("btnG")

 selenium.wait_for_page_to_load("5000")

 self.assertEqual("Selenium OpenQA - Google Search", selenium.get_title())

 def tearDown(self):

 self.selenium.stop()

suite = unittest.TestLoader().loadTestsFromTestCase(TestSeleniumSample)

testResult = unittest.TextTestRunner(verbosity=2).run(suite)

releaseId = 1

testSetId = -1

spiraTestExtension = spiratestextension.SpiraTestExtension()

spiraTestExtension.projectId = 1

spiraTestExtension.server = "localhost"

spiraTestExtension.port = 80

spiraTestExtension.path = "SpiraTest"

spiraTestExtension.userName = "fredbloggs"

spiraTestExtension.password = "fredbloggs"

spiraTestExtension.recordResults(TestSeleniumSample, testResult, releaseId, testSetId,

"Selenium")

The details of the sample itself are described in more detail on the Selenium website, and you can see

that we have added the SpiraTest specific test case suffixes and reporting code into the test methods to

indicate that they need to report back to SpiraTest.

However there is one change that has been made to the spiraTestExtension.recordResults method called

at the end of the test case. An extra string parameter has been specified that contains “Selenium”. This

tells the SpiraTest PyUnit extension to report the results back as being generated by Selenium rather

than PyUnit.

Page 32 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

6. Integrating with PyUnit

6.1. Installing the PyUnit Extension

This section outlines how to install the SpiraTest Extension for PyUnit onto a workstation so that you can

then run automated PyUnit tests against a Python application and have the results be recorded as test

runs inside SpiraTest. It assumes that you already have a working installation of SpiraTest v2.3 or later,

and a working Python development environment. If you have an earlier version of SpiraTest you will need

to upgrade to at least v2.3 before trying to use this extension.

To obtain the version of the PyUnit extension that is compatible with your version of SpiraTest, you simply

need to log-in as a project-level administrator to SpiraTest, go to the Administration home page and

download the PyUnit Extension compressed archive (.zip). This process is described in the SpiraTest

Administration Guide in more detail.

• Note: there are two versions of the PyUnit extension, one compatible with Python 2.x, and one

compatible with Python 3.x. Please make sure you use the correct version.

The PyUnit extension is provided as a set of Python source files that can be imported into your existing

unit tests to add the SpiraTest reporting functionality. Once you have downloaded the Zip archive, you

simply need to uncompress it into a folder of your choice on your local system (e.g. C:\Program

Files\SpiraTest\PyUnit Extension)

Now to use the extension within your test cases, you need to first make sure that the folder is added to

the Python PYTHONPATH. The method for doing this is dependent on the platform you’re using, so

please refer to the documentation on python.org for details on the appropriate method for your platform.

As an example, on a Windows platform, the folder would be added to the PYTHONPATH by typing the

following:

set PYTHONPATH=%PYTHONPATH%; C:\Program Files\SpiraTest\PyUnit Extension

Once you have completed this step, you are now ready to begin using your PyUnit test fixtures with

SpiraTest.

6.2. Using PyUnit with SpiraTest

The typical code structure for a PyUnit test fixture coded in Python is as follows:

import random

import unittest

sample PyUnit test case

class TestSequenceFunctions(unittest.TestCase):

 def setUp(self):

 self.seq = range(10)

 def testshuffle(self):

 # make sure the shuffled sequence does not lose any elements

 random.shuffle(self.seq)

 self.seq.sort()

 self.assertEqual(self.seq, range(10))

 def testchoice(self):

 element = random.choice(self.seq)

 self.assert_(element in self.seq)

 def testfail(self):

 self.assertEqual(1, 2, "1==2 Should fail")

http://www.junit.org/

Page 33 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 def testsample(self):

 self.assertRaises(ValueError, random.sample, self.seq, 20)

 for element in random.sample(self.seq, 5):

 self.assert_(element in self.seq)

suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)

testResult = unittest.TextTestRunner(verbosity=2).run(suite)

The Python class is marked as a PyUnit test fixture by inheriting from the unittest.TestCase base class,

and the individual test methods are identified by using the ‘test’ prefix, with special setUp() and

tearDown() methods reserved for the respective purposes. When you open up the class in a PyUnit

runner or execute from the command line it loads all the test classes and executes all the methods

marked with ‘test…’ in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and PyUnit moves on to the next test method.

So, to use SpiraTest with PyUnit, each of the test cases written for execution by PyUnit needs to have a

corresponding test case in SpiraTest. These can be either existing test cases that have manual test steps

or they can be new test cases designed specifically for automated testing and therefore have no defined

test steps. In either case, the changes that need to be made to the PyUnit test fixture for SpiraTest to

record the PyUnit test run are illustrated below:

import random

import unittest

import spiratestextension

sample PyUnit test case

class TestSequenceFunctions(unittest.TestCase):

 def setUp(self):

 self.seq = range(10)

 def testshuffle__2(self):

 # make sure the shuffled sequence does not lose any elements

 random.shuffle(self.seq)

 self.seq.sort()

 self.assertEqual(self.seq, range(10))

 def testchoice__3(self):

 element = random.choice(self.seq)

 self.assert_(element in self.seq)

 def testfail__4(self):

 self.assertEqual(1, 2, "1==2 Should fail")

 def testsample__5(self):

 self.assertRaises(ValueError, random.sample, self.seq, 20)

 for element in random.sample(self.seq, 5):

 self.assert_(element in self.seq)

suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)

testResult = unittest.TextTestRunner(verbosity=2).run(suite)

releaseId = 1

testSetId = 1

spiraTestExtension = spiratestextension.SpiraTestExtension()

spiraTestExtension.projectId = 1

spiraTestExtension.server = "localhost"

spiraTestExtension.port = 80

spiraTestExtension.ssl = False

Page 34 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

spiraTestExtension.path = "SpiraTest"

spiraTestExtension.userName = "fredbloggs"

spiraTestExtension.password = "PleaseChange"

spiraTestExtension.recordResults(TestSequenceFunctions, testResult, releaseId, testSetId)

Firstly, each of the individual test methods is appended with two underscores followed by the ID of the

corresponding test case in SpiraTest. So for example testshuffle() is now testshuffle__2() as it maps to

test case TC00002 inside SpiraTest.

Second, at the end of the test run, the testResults object generated by the test run is passed to a special

SpiraTestExtension() class via the recordResults() method. This class takes the results from the test run

and uses it to generate the web-service messages that are sent to SpiraTest to communicate the test

results.

The following attributes need to be set on the instance of the SpiraTestExtension() object so that the

extension can access the SpiraTest repository:

 spiraTestExtension.projectId – The ID of the project inside SpiraTest (this can be found on the

project homepage in the “Project Overview” section)

 spiraTestExtension.server - The name of the web server that SpiraTest is installed on

 spiraTestExtension.port – The port used to access SpiraTest over the network (typically 80

unless you have a custom port setup)

 spiraTestExtension.ssl – This should be set to False for HTTP and True for HTTPS

 spiraTestExtension.path – The path to SpiraTest on your webserver (typically just ‘SpiraTest’)

 spiraTestExtension.userName - A valid username for the instance of SpiraTest that has access

to the project specified above

 spiraTestExtension.password - A valid password for the user specified above

In addition, when calling the recordResults() method, you should also pass the Release ID and the

Test Set ID which is used to tell SpiraTest which release and/or test set to associate the test execution

with.

The Release ID can be found on the releases list page (click on the Planning > Releases tab) – just

remove the RL prefix from the number as well as any leading zeros. Similarly, the Test Set ID can be

found on the test set list page (click on the Testing > Test Sets tab) – just remove the TX prefix from the

number as well as any leading zeros. If you don’t want to associate the test run with a specific release or

test set, just use the special value -1 to indicate N/A.

Now all you need to do is save your code, launch PyUnit, run the test fixtures as you would normally do,

and when you view the test cases in SpiraTest, you should see a PyUnit automated test run displayed in

the list of executed test runs:

Page 35 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Clicking on one of the PyUnit test runs will bring up a screen that provides information regarding what

PyUnit test method failed, what the error was, together with the associated code stack-trace:

Congratulations… You are now able to run PyUnit automated tests and have the results be recorded

within SpiraTest. The sample test fixture testsequencefunctions.py is provided with the installation.

Page 36 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

7. Integrating with PyTest

This section describes how to use SpiraTest/SpiraTeam/SpiraPlan (hereafter referred to as SpiraTest) in

conjunction with python’s pytest unit testing framework. The SpiraTest-pytest plugin enables the

automated sending of unit test results from pytest to SpiraTest with a specified Test Case, and

(optionally), a release and/or test set as well.

7.1. Installing the pytest plugin

This section outlines how to install the SpiraTest plugin for pytest. It assumes that you already have a
working installation of SpiraTest v2.3 or later. If you have an earlier version of SpiraTest you will need to
upgrade to at least v2.3 before trying to use this plugin. You will also need to have Python (with pip) and
pytest version 3.0 or later.

To obtain the latest version of the SpiraTest plugin, simply run the following command:
pip install pytest-spiratest

This command will install the latest version of the plugin straight from the Python Package Index (PyPI).
Once the SpiraTest plugin is successfully installed, all you need to do is configure the extension, then you
can begin testing!

7.2 Configuring the pytest plugin

This section outlines how to configure the SpiraTest plugin for pytest. It assumes that you are familiar with
pytest, and already have some working tests configured.

Here is a sample test file:

import pytest

Function we are testing

def add(num1, num2):

 return num1 + num2

Successful test

def test_add_1():

 assert add(1, 1) == 2

Failed test

def test_add_2():

 assert add(2, 1) == 2

Failed test

def test_add_3():

 assert add(4, 1) == 6

Note how test_add_2 is used in the configuration file discussed below.

In your test root folder (the folder you run the pytest command from), create a file named “spira.cfg” with
the following:

[credentials]

https://pypi.org/project/pytest-spiratest/

Page 37 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Following are required

url = localhost/SpiraTest

username = fredbloggs

token = {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXXX}

project_id = 1

Following are optional:

release_id = 5

test_set_id = 1

[test_cases]

Assigned to the rest

default = 20

Test case for a specific function

test_add_2 = 22

For the plugin to work, you must have both settings groups (credentials and test_cases) with the following
in the credentials group:

 url – The base url to your SpiraTest installation, without a ‘/’ at the end.

 username – The username you use to sign into SpiraTest.

 token – Your RSS Token. Found in your profile page as the “RSS Token” field, you must have

RSS Feeds enabled for this to work.

 project_id – The ID of the project you would like the test runs to be sent to

 release_id – OPTIONAL – Use if you would like to associate the test run with a release.

 test_set_id – OPTIONAL – Use if you would like to associate the test run with a test set.

Under the test_cases group, put the following:

 default – The default test case ID for functions without an assigned test case

 <function name> - Used to override the default setting for a function’s test case ID in SpiraTest.

Only include the function name, without the parentheses.

Once you have filled out all of the configurations, you are all set to go!

Running the pytest (or py.test) command will run your unit tests, send the data to SpiraTest, and show the

results to you. Here is an example of the test_add_3 function inside SpiraTest:

Page 38 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

8. Integrating with MS-Test

This section describes how to use SpiraTest in conjunction with the unit testing features provided by

Microsoft Visual Studio Team System (MS VSTS) Test – commonly known as MS-Test.

8.1. Installing the MS-Test Extension

This section outlines how to install the SpiraTest extension for Microsoft Visual Studio Team System Test

(MS-Test) onto a workstation so that you can then run automated MS-Test tests against a .NET

application and have the results be recorded as test runs inside SpiraTest. It assumes that you already

have a working installation of SpiraTest v2.3 or later. If you have an earlier version of SpiraTest you will

need to upgrade to at least v2.3 before trying to use this add-in. You will also need to have either Visual

Studio Team System 2005 or later or Visual Studio 2008 Professional or later, since earlier versions do

not come with the test automation features.

To obtain the latest version of the SpiraTest extension, you can either access the administration section

of SpiraTest, and click on the Add-Ins & Downloads link or simply visit the Inflectra corporate downloads

webpage (http://www.inflectra.com/Products/Downloads.aspx) and then download the compressed

archive (.zip) that contains the extension and associated sample files.

The MS-Test extension is provided as a compressed zipfile that includes both the binaries (packaged as

a .NET dll assembly) and the source code (stored in a Visual Studio project folder structure). The rest of

this section will assume that you are using the pre-compiled assembly.

Once you have downloaded the Zip archive, you need to uncompress it into a folder of your choice on

your local system. Assuming that you uncompressed it to the C:\Program

Files\SpiraTest\MSTest Extension folder, you should have the following folder structure created:

C:\Program Files\SpiraTest\MSTest Extension

C:\Program Files\SpiraTest\MSTest Extension\SampleMSTest

C:\Program Files\SpiraTest\MSTest Extension\SampleMSTest\Properties

C:\Program Files\SpiraTest\MSTest Extension\SpiraTestMSExtension

C:\Program Files\SpiraTest\MSTest Extension\SpiraTestMSExtension\Properties

C:\Program Files\SpiraTest\MSTest Extension\SpiraTestMSExtension\Web References

The pre-built assembly SpiraTestMSTestExtension.dll is located in the root folder, the source-code for the

extension can be found in the “SpiraTestMSExtension” subfolder, and the sample test fixture can be

found in the “SampleMSTest” subfolder.

Now to use the extension within your test cases, you need to first make sure that the

SpiraTestMSTestExtension.dll assembly is added to the project references. Once you have completed

this step, you are now ready to begin using your MS-Test test fixtures with SpiraTest.

8.2. Using MS-Test with SpiraTest

The typical code structure for a Visual Studio Team System Test (MS-Test) test fixture coded in C# is as

follows:

using System;

using System.Threading;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Inflectra.SpiraTest.AddOns.SpiraTestMSTestExtension.SampleMSTest

{

 /// <summary>

 /// Sample test fixture that tests the SpiraTest integration

 /// Written by Paul Tissue. Packed by Inflectra Corporation

http://www.inflectra.com/Products/Downloads.aspx

Page 39 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 /// </summary>

 [

 TestClass

]

 public class SpiraTestCaseAttributeTest

 {

 /// <summary>

 /// Test fixture state

 /// </summary>

 protected static int testFixtureState = 1;

 /// <summary>

 /// Constructor method

 /// </summary>

 public SpiraTestCaseAttributeTest()

 {

 //Delegates to base

 //Set the state to 2

 testFixtureState = 2;

 }

 /// <summary>

 /// Sample test that asserts a failure and overrides the default configuration

 /// </summary>

 [

 TestMethod

]

 public void SampleFail()

 {

 //Verify the state

 Assert.AreEqual(2, testFixtureState, "*Real Error*: State not persisted");

 //Failure Assertion

 Assert.AreEqual(1, 0, "Failed as Expected");

 }

 /// <summary>

 /// Sample test that succeeds - uses the default configuration

 /// </summary>

 [

 TestMethod

]

 public void SamplePass()

 {

 //Verify the state

 Assert.AreEqual(2, testFixtureState, "*Real Error*: State not persisted");

 //Successful assertion

 Assert.AreEqual(1, 1, "Passed as Expected");

 }

 /// <summary>

 /// Sample test that does not log to SpiraTest

 /// </summary>

 [

 TestMethod,

 ExpectedException(typeof(AssertFailedException))

]

 public void SampleIgnore()

 {

 //Verify the state

 Assert.AreEqual(2, testFixtureState, "*Real Error*: State not persisted");

 //Failure Assertion

 Assert.AreEqual(1, 0, "Failed as Expected");

 }

 }

}

Page 40 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

The .NET class is marked as a MS-Test unit test fixture by applying the [TestClass] attribute to the class

as a whole, and the [TestMethod] attribute to each of the test assertion methods individually – shown

above. When you open up the class in Visual Studio and click Tests > Run > Run All Tests in Solution it

loads all the test classes marked with [TestClass] and executes all the methods marked with

[TestMethod] in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and MS-Test moves on to the next test method.

So, to use SpiraTest with MS-Test, each of the test cases written for execution by MS-Test needs to have

a corresponding test case in SpiraTest. These can be either existing test cases that have manual test

steps or they can be new test cases designed specifically for automated testing and therefore have no

defined test steps. In either case, the changes that need to be made to the MS-Test test fixture for

SpiraTest to record the MS-Test test run are illustrated below:

using System;

using System.Threading;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Inflectra.SpiraTest.AddOns.SpiraTestMSTestExtension.SampleMSTest

{

 /// <summary>

 /// Sample test fixture that tests the SpiraTest integration

 /// Written by Paul Tissue. Packed by Inflectra Corporation

 /// </summary>

 [

 TestClass

]

 public class SpiraTestCaseAttributeTest : MSTestExtensionsTestFixture

 {

 /// <summary>

 /// Test fixture state

 /// </summary>

 protected static int testFixtureState = 1;

 /// <summary>

 /// Constructor method

 /// </summary>

 public SpiraTestCaseAttributeTest()

 {

 //Delegates to base

 //Set the state to 2

 testFixtureState = 2;

 }

 /// <summary>

 /// Sample test that asserts a failure and overrides the default configuration

 /// </summary>

 [

 TestMethod,

 SpiraTestCase(5),

 SpiraTestConfiguration("http://localhost/SpiraTest", "fredbloggs", "fredbloggs", 1, 1,

2)

]

 public void SampleFail()

 {

 //Verify the state

 Assert.AreEqual(2, testFixtureState, "*Real Error*: State not persisted");

 //Failure Assertion

 Assert.AreEqual(1, 0, "Failed as Expected");

 }

 /// <summary>

Page 41 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 /// Sample test that succeeds - uses the default configuration

 /// </summary>

 [

 TestMethod,

 SpiraTestCase(6)

]

 public void SamplePass()

 {

 //Verify the state

 Assert.AreEqual(2, testFixtureState, "*Real Error*: State not persisted");

 //Successful assertion

 Assert.AreEqual(1, 1, "Passed as Expected");

 }

 /// <summary>

 /// Sample test that does not log to SpiraTest

 /// </summary>

 [

 TestMethod,

 ExpectedException(typeof(AssertFailedException))

]

 public void SampleIgnore()

 {

 //Verify the state

 Assert.AreEqual(2, testFixtureState, "*Real Error*: State not persisted");

 //Failure Assertion

 Assert.AreEqual(1, 0, "Failed as Expected");

 }

 }

}

And the following settings need to be added to the .config file associated with the test fixture assembly:

<?xml version="1.0"?>

<configuration>

 <configSections>

 <sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup,

System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >

 <section name="Inflectra.SpiraTest.AddOns.SpiraTestMSTestExtension.Properties.Settings"

type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089" requirePermission="false" />

 </sectionGroup>

 </configSections>

 <applicationSettings>

 <Inflectra.SpiraTest.AddOns.SpiraTestMSTestExtension.Properties.Settings>

 <setting name="Url" serializeAs="String">

 <value>http://localhost/SpiraTest</value>

 </setting>

 <setting name="Login" serializeAs="String">

 <value>fredbloggs</value>

 </setting>

 <setting name="Password" serializeAs="String">

 <value>fredbloggs</value>

 </setting>

 <setting name="ProjectId" serializeAs="String">

 <value>1</value>

 </setting>

 <setting name="ReleaseId" serializeAs="String">

 <value>1</value>

 </setting>

 <setting name="TestSetId" serializeAs="String">

 <value>1</value>

 </setting>

 <setting name="RecordTestRun" serializeAs="String">

 <value>True</value>

 </setting>

 </Inflectra.SpiraTest.AddOns.SpiraTestMSTestExtension.Properties.Settings>

Page 42 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 </applicationSettings>

Firstly the settings in the .config file indicate the following information to the test fixture:

 The URL to the instance of SpiraTest being accessed. This needs to start with http:// or

https://.

 A valid username and password for the instance of SpiraTest.

 The ID of the project (this can be found on the project homepage in the “Project Overview”

section)

 (Optional) The ID of the release to associate the test-run with. This can be found on the releases

list page (click on the Planning > Releases tab)

 (Optional) The ID of the test set to associate the test-run with. This can be found on the test set

list page (click on the Testing > Test Sets tab)

 A flag that tells MS-Test whether or not to record the results in SpiraTest.

Next, the test fixture class needs to be derived from the MSTestExtensionsTestFixture base class so that

the test runner knows that the test class will be reporting back to SpiraTest.

In addition, each of the individual test methods needs to be mapped to a specific test case within

SpiraTest. This is done by adding a [SpiraTestCase] attribute to the test method together with the ID of

the corresponding test case in SpiraTest. The Test Case ID can be found on the test cases list page (click

the “Test Cases” tab).

In addition you can also override the default SpiraTest configuration settings from the .config file by

adding the [SpiraTestConfiguration] attribute directly to the test method and specifying the SpiraTest

URL, authentication information, project id, release id (optional) and test set id (optional). An example of

this is shown above for the SampleFail() method.

Now all you need to do is compile your code, launch Visual Studio, run the test fixtures as you would

normally do, and when you view the test cases in SpiraTest, you should see a MSTest automated test run

displayed in the list of executed test runs:

Clicking on one of the MSTest test runs will bring up a screen that provides information regarding what

MSTest test method failed, what the error was, together with the associated code stack-trace:

Page 43 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations. You are now able to run MSTest automated tests and have the results be recorded

within SpiraTest. The sample test project SampleMSTest is provided with the installation.

Page 44 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

9. Integrating with Ruby Test::Unit

9.1. Installing the Ruby Test::Unit Test Runner

This section outlines how to install the SpiraTest custom Test Runner for Test::Unit onto a workstation so

that you can then run automated Test::Unit tests against a Ruby application and have the results be

recorded as test runs inside SpiraTest. It assumes that you already have a working installation of

SpiraTest v2.3 or later, and a working Ruby development environment. If you have an earlier version of

SpiraTest you will need to upgrade to at least v2.3 before trying to use this extension.

To obtain the version of the Test::Unit test runner that is compatible with your version of SpiraTest, you

simply need to log-in as a project-level administrator to SpiraTest, go to the Administration home page

and download the Test::Unit test runner compressed archive (.zip). This process is described in the

SpiraTest Administration Guide in more detail.

The Test::Unit test runner is provided as a set of Ruby source files that can be imported into your existing

unit tests to add the SpiraTest reporting functionality. Once you have downloaded the Zip archive, you

simply need to uncompress it into a folder of your choice on your local system (e.g. C:\Program

Files\SpiraTest\RubyTestUnitRunner)

Now to use the custom test runner within your test cases, you need to first make sure that the folder is

added to the Ruby RUBYPATH (or just the system PATH). The method for doing this is dependent on the

platform you’re using, so please refer to the documentation on http://ruby-lang.org for details on the

appropriate method for your platform. As an example, on a Windows platform, the folder would be added

to the RUBYPATH by typing the following:

set RUBYPATH=%RUBYPATH%; C:\Program Files\SpiraTest\RubyTestUnitRunner

Once you have completed this step, you are now ready to begin using your Test::Unit test fixtures with

SpiraTest.

9.2. Using Ruby Test::Unit with SpiraTest

The typical code structure for a Test::Unit test suite and test case coded in Ruby is as follows:

#this is a test case that tests addition operations

class TC_Adder < Test::Unit::TestCase

 def setup

 @adder = Adder.new(5)

 end

 def test_add

 assert_equal(7, @adder.add(2), "Should have added correctly")

 end

 def test_addfail

 assert_equal(7, @adder.add(3), "Test failure")

 end

 def teardown

 @adder = nil

 end

end

#this is a test suite that calls the test case

class TS_Examples

def self.suite

 suite = Test::Unit::TestSuite.new

 suite << TC_Adder.suite

 return suite

 end

end

Test::Unit::UI::Console::TestRunner.run(TS_Examples)

http://ruby-lang.org/

Page 45 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

The Test::Unit test case is marked as a Test::Unit test case by inheriting from the Test::Unit::TestCase

base class, and the individual test methods are identified by using the ‘test’ prefix, with special setup and

teardown methods reserved for the respective purposes. When you open up the class in a Ruby

Test::Unit runner or execute from the command line it loads all the test classes and executes all the

methods marked with ‘test…’ in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and Test::Unit moves on to the next test method.

So, to use SpiraTest with Test::Unit, each of the test cases written for execution by Test::Unit needs to

have a corresponding test case in SpiraTest. These can be either existing test cases that have manual

test steps or they can be new test cases designed specifically for automated testing and therefore have

no defined test steps. In either case, the changes that need to be made to the Test::Unit test case and

test suite for SpiraTest to record the Test::Unit test run are illustrated below:

#this is a test case that tests addition operations

class TC_Adder < Test::Unit::TestCase

 def setup

 @adder = Adder.new(5)

 end

 def test_add__2

 assert_equal(7, @adder.add(2), "Should have added correctly")

 end

 def test_addfail__3

 assert_equal(7, @adder.add(3), "Test failure")

 end

 def teardown

 @adder = nil

 end

end

#this is a test suite that calls the test case

class TS_Examples

def self.suite

 suite = Test::Unit::TestSuite.new

 suite << TC_Adder.suite

 return suite

 end

end

projectId = 1

releaseId = 2

testSetId = -1

testRunner = Test::Unit::SpiraTest::TestRunner.new(TS_Examples,

"http://servername/SpiraTest", "fredbloggs", "fredbloggs", projectId, releaseId,

testSetId)

testRunner.start

Firstly, each of the individual test methods is appended with two underscores followed by the ID of the

corresponding test case in SpiraTest. So for example test_add is now test_add__2 as it maps to test case

TC00002 inside SpiraTest.

Second, at the end of the test suite, instead of just creating the standard Console Test Runner class and

passing it a reference to the test suite (e.g. TS_Examples), we now create an instance of the special

Test::Unit::SpiraTest::TestRunner class, passing it a reference to the test suite as well as specifying the

SpiraTest connection information.

Page 46 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

This class takes the results from the test suite being executed and uses it to generate the web-service

messages that are sent to SpiraTest to communicate the test results.

The following parameters need to be passed during the instantiation of the

Test::Unit::SpiraTest::TestRunner object so that the custom test runner can access the SpiraTest

repository:

 suite – the reference to the Test::Unit test suite that contains the test cases being executed. In

our example above, this is the TS_Examples class.

 baseUrl– The base URL used to access your instance of SpiraTest (e.g.

http://myserver/SpiraTest). It should include the protocol (e.g. http/https), the server-name, the

port number (if not 80/443) and the virtual directory (if there is one).

 userName - A valid username for the instance of SpiraTest that has access to the project

specified above

 password - A valid password for the user specified above

 projectId - The ID of the project inside SpiraTest (this can be found on the project homepage in

the “Project Overview” section)

 releaseId - The ID of the SpiraTest release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to associate the

test run with a specific release, just use the value -1 to indicate N/A.

 testSetId - The ID of the SpiraTest test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to associate the test

run with a specific test set, just use the value -1 to indicate N/A.

Now all you need to do is save your code, launch Test::Unit, run the test fixtures as you would normally

do (e.g. by executing the TS_Examples ruby file from the command line), and when you view the test

cases in SpiraTest, you should see a Ruby Test::Unit automated test run displayed in the list of executed

test runs:

Clicking on one of the Ruby Test::Unit test runs will bring up a screen that provides information regarding

what Ruby Test::Unit test method failed, what the error was, together with the associated code stack-

trace:

http://myserver/SpiraTest

Page 47 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations… You are now able to run Test::Unit automated tests and have the results be recorded

within SpiraTest. The sample test suite ts_examples.rb together with two test cases (tc_adder and

tc_subtracter) is provided with the installation.

Page 48 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

10. Integrating with Perl TAP

10.1. Installing the Perl TAP Extension

This section outlines how to install the SpiraTest extensions for Perl’s Test Anything Protocol (TAP) so

that you can then run automated Perl TAP unit tests against a Perl application and have the results be

recorded as test runs inside SpiraTest. It assumes that you already have a working installation of

SpiraTest v2.3 or later, and a working Perl development environment. If you have an earlier version of

SpiraTest you will need to upgrade to at least v2.3 before trying to use this extension.

To obtain the latest version of the TAP extension you simply need to go to

http://www.inflectra.com/SpiraTest/Downloads.aspx page and download the Perl TAP Extension

compressed archive (.zip). This process is described in the SpiraTest Administration Guide in more detail.

The TAP extension is provided as a set of Perl library files (.pm) that can be imported into your existing

TAP test harnesses to add the SpiraTest reporting functionality. Once you have downloaded the Zip

archive, you simply need to uncompress it and copy the Inflectra folder (and subfolders) into the

standard Perl library location (e.g. C:\Perl\lib on Windows). The sample files (the ones ending in .pl)

that are not located in a folder can be put into a folder of your choice.

Once you have completed this step, you are now ready to begin running one of the provided samples or

use your existing TAP unit tests with SpiraTest.

10.2. Using Perl TAP Extension with SpiraTest

The typical code structure for a Perl TAP test harness is as follows:

a) The sample test harness - SampleHarness.pl

#this is a test case that tests addition operations

#!/usr/bin/perl -w

use TAP::Harness;

#instantiate the harness

my $harness = TAP::Harness ->new;

#define the list of tests to be executed

my @tests = ("SampleTest1.pl", "SampleTest2.pl");

$harness->runtests(@tests);

b) One of the sample test fixtures – Sample1Test.pl

#!/usr/bin/perl -w

Specify our plan, how many tests we're writing

 use Test::More tests => 9;

 # or alternately, if we don't know how many:

 # use Test::More qw(no_plan);

 # Check that our module compiles and can be "use"d.

 BEGIN { use_ok('Inflectra::SpiraTest::Addons::Samples::TestMe'); }

 # Check our module can be required. Very similar test to that above.

 require_ok('Inflectra::SpiraTest::Addons::Samples::TestMe');

 # There are a number of ways to generate the "ok" tests. These are:

 # ok: first argument is true, second argument is name of test.

 # is: first argument equals (eq) second argument, third argument is name of test.

 # isnt: first argument does not equal (ne) the second, third is name of test

http://www.inflectra.com/SpiraTest/Downloads.aspx

Page 49 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 # like: first argument matches regexp in second, third is name of test

 # unlike: first argument does not match regexp, third is name of test

 # cmp_ok: compares first and third argument with comparison in second. Forth is test

name.

 # Here are some examples that should PASS

 ok(add(1,1) == 2, "Basic addition is working");

 is (subtract(2,1), 1, "Basic subtraction is working");

 isnt(multiply(2,2), 5, "Basic multiplication doesn't fail");

Here are some examples that should FAIL

 ok(add(1,1) == 3, "Basic addition is working");

 is (subtract(2,1), 0, "Basic subtraction is working");

 isnt(multiply(2,2), 4, "Basic multiplication doesn't fail");

Here is an example of a test that throws an ERROR

is($notdeclared, 1, "Undeclared variable test");

The TAP test cases in the sample code use the Test::More library which provides the necessary assertion

methods for testing results from the code under test. The tests are themselves executed by adding their

filenames to an array passed to the default TAP::Harness class. To run the test cases, you just need to

execute the SampleHarness.pl file from the command line, and the test output will be echoed onto the

screen.

Now, to use SpiraTest with TAR, each of the TAP test case files (e.g. SampleTest1.pl, SampleTest2.pl in

our example) needs to have a corresponding test case in SpiraTest. These can be either existing test

cases that have manual test steps or they can be new test cases designed specifically for automated

testing and therefore have no defined test steps. In either case, no changes need to be made to the

individual test cases, but the following changes need to be made to the test harness (illustrated in yellow

below):

#this is a test case that tests addition operations

#!/usr/bin/perl -w

use Inflectra::SpiraTest::Addons::SpiraHarness::Harness;

#instantiate the harness

my $harness = Inflectra::SpiraTest::Addons::SpiraHarness::Harness->new;

#specify the spiratest custom harness properties

$spira_args = {};

$spira_args->{"base_url"} = "http://localhost/SpiraTest";

$spira_args->{"user_name"} = "fredbloggs";

$spira_args->{"password"} = "fredbloggs";

$spira_args->{"project_id"} = 1;

$spira_args->{"release_id"} = 1;

$spira_args->{"test_set_id"} = 1;

$harness->{"spira_args"} = $spira_args;

#define the list of tests and their SpiraTest Mapping

#Hash is of the format: TestFile => Test Case ID

my $tests = {};

$tests->{"SampleTest1.pl"} = 2;

$tests->{"SampleTest2.pl"} = 3;

$harness->runtests($tests);

Firstly you need to use the SpiraTest specific harness rather than the general TAP::Harness library. This

new class is actually a subclass of the standard one, so it supports all the same methods, with the

exception of the runtests command, which now accepts a Perl hashref rather than a simple array.

Page 50 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Also you need to create and pass a hashref of arguments to the test harness (the spira_args property on

the instantiated harness class) so that it knows how to access the SpiraTest server during test execution:

 base_url– The base URL used to access your instance of SpiraTest (e.g.

http://myserver/SpiraTest). It should include the protocol (e.g. http/https), the server-name, the

port number (if not 80/443) and the virtual directory (if there is one).

 user_name - A valid username for the instance of SpiraTest that has access to the project

specified above

 password - A valid password for the user specified above

 project_id - The ID of the project inside SpiraTest (this can be found on the project homepage in

the “Project Overview” section)

 release_id - The ID of the SpiraTest release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to associate the

test run with a specific release, just comment out the line.

 test_set_id - The ID of the SpiraTest test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to associate the test

run with a specific test set, just comment out the line.

Finally instead of passing a simple array of the test case files to be executed, you instead need to create

a Perl hashref and pass that to the runtests(…) method. The hashref needs to contain a list of the various

test case files and their associated SpiraTest Test Case ID with the TC prefix removed (e.g. test case

TC00005 would be just 5).

Now all you need to do is save your code, run the test fixtures as you would normally do (e.g. by

executing from the command line), and when you view the test cases in SpiraTest, you should see a

Perl::TAP automated test run displayed in the list of executed test runs:

Clicking on one of the Perl::TAP test runs will bring up a screen that provides information regarding what

Perl::TAP test method failed, what the error was, together with the associated code stack-trace:

http://myserver/SpiraTest

Page 51 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations… You are now able to run Perl TAP unit tests and have the results be recorded within

SpiraTest. The sample test suite SampleHarness.pl together with its two test cases

(SampleTest1.pl and SampleTest2.pl) is provided with the installation.

Page 52 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

11. Integrating with PHPUnit

11.1. Installing the PHPUnit Extension

This section outlines how to install the SpiraTest Extension for PHPUnit onto a workstation so that you

can then run automated PHPUnit tests against a PHP application and have the results be recorded as

test runs inside SpiraTest. It assumes that you already have a working installation of SpiraTest v2.3 or

later, and a working PHP development environment. If you have an earlier version of SpiraTest you will

need to upgrade to at least v2.3 before trying to use this extension.

To obtain the latest version of the SpiraTest PHPUnit extension you simply need to go to

http://www.inflectra.com/SpiraTest/Downloads.aspx page and download the PHPUnit Extension

compressed archive (.zip). This process is described in the SpiraTest Administration Guide in more detail.

The PHPUnit extension is provided as a set of PHP source files that can be imported into your existing

unit tests to add the SpiraTest reporting functionality. Once you have downloaded the Zip archive, you

simply need to uncompress it into a folder of your choice on your local system (e.g. C:\Program

Files\SpiraTest\PHPUnit Extension)

Now to use the extension within your test cases, you need to first make sure that the folder is added to

the PHP include_path. The method for doing this is dependent on the platform you’re using, so please

refer to the documentation on php.org for details on the appropriate method for your platform.

Alternatively you can copy the PHPUnit extension files to the root of the PHP installation and then just

include the extension files using the root folder syntax.

Once you have completed these steps, you are now ready to begin using your PHPUnit test fixtures with

SpiraTest.

11.2. Using PHPUnit with SpiraTest

The typical code structure for a PHPUnit test suite and test case coded in PHP is as follows:

a) Sample Test Suite

<?php

/**

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

 require_once 'PHPUnit/Framework.php';

 require_once 'PHPUnit/TextUI/ResultPrinter.php';

 require_once './SimpleTest.php';

 // Create a test suite that contains the tests

 // from the ArrayTest class

 $suite = new PHPUnit_Framework_TestSuite('SimpleTest');

 // Create a test result and attach the default console text listener

 $result = new PHPUnit_Framework_TestResult;

 $textPrinter = new PHPUnit_TextUI_ResultPrinter;

 $result->addListener($textPrinter);

 // Run the tests and print the results

 $result = $suite->run($result);

 $textPrinter->printResult($result);

 ?>

http://www.inflectra.com/SpiraTest/Downloads.aspx
http://www.junit.org/

Page 53 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

b) Sample Test Case

<?php

require_once 'PHPUnit/Framework/TestCase.php';

/**

 * Some simple tests

 *

 * @author Inflectra Corporation

 * @version 2.2.0

 *

 */

class SimpleTest extends PHPUnit_Framework_TestCase

{

 protected $fValue1;

 protected $fValue2;

 /**

 * Sets up the unit test

 */

 protected function setUp()

 {

 $this->fValue1= 2;

 $this->fValue2= 3;

 }

 /**

 * Tests the addition of the two values

 */

 public function testAdd()

 {

 $result = $this->fValue1 + $this->fValue2;

 // forced failure result == 5

 $this->assertTrue ($result == 6);

 }

 /**

 * Tests division by zero

 */

 /*

 public function testDivideByZero()

 {

 $zero = 0;

 $result = 8 / $zero;

 $result++; // avoid warning for not using result

 }

 /**

 * Tests two equal values

 */

 /*

public function testEquals()

 {

 $this->assertEquals(12, 12);

 $this->assertEquals(12.0, 12.0);

 $num1 = 12;

 $num2 = 12;

 $this->assertEquals($num1, $num2);

 $this->assertEquals("Size", 12, 13);

 $this->assertEquals("Capacity", 12.0, 11.99, 0.0);

 }

Page 54 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 /**

 * Tests success

 */

 /*

 public function testSuccess()

 {

 //Successful test

 $this->assertEquals(12, 12);

 }

}

?>

The PHP class is marked as a PHPUnit test case by inheriting from the PHPUnit_Framework_TestCase

base class, and the individual test methods are identified by using the ‘test’ prefix, with special setUp()

and tearDown() methods reserved for the respective purposes. When you open up the class in a PHPUnit

runner or execute from the command line it loads all the test classes and executes all the methods

marked with ‘test…’ in turn.

Each of the Assert statements is used to test the state of the application after executing some sample

code that calls the functionality being tested. If the condition in the assertion is true, then execution of the

test continues, if it is false, then a failure is logged and PHPUnit moves on to the next test method.

So, to use SpiraTest with PHPUnit, each of the test cases written for execution by PHPUnit needs to have

a corresponding test case in SpiraTest. These can be either existing test cases that have manual test steps

or they can be new test cases designed specifically for automated testing and therefore have no defined

test steps. In either case, the changes that need to be made to the PHPUnit test case and test suite for

SpiraTest to record the PHPUnit test run are illustrated below:

a) Sample Test Suite

<?php

/**

 * Passes a list of tests to be executed to PHPUnit and adds the custom SpiraTest Listener

 *

 * @author Inflectra Corporation

 * @version 2.3.0

 *

 */

 require_once 'PHPUnit/Framework.php';

 require_once 'PHPUnit/TextUI/ResultPrinter.php';

 require_once './SimpleTest.php';

 require_once '../SpiraListener/Listener.php';

 // Create a test suite that contains the tests

 // from the ArrayTest class

 $suite = new PHPUnit_Framework_TestSuite('SimpleTest');

 //Set the timezone identifier to match that used by the SpiraTest server

 date_default_timezone_set ("US/Eastern");

 //Create a new SpiraTest listener instance and specify the connection info

 $spiraListener = new SpiraListener_Listener;

 $spiraListener->setBaseUrl ('http://localhost/SpiraTeam');

 $spiraListener->setUserName ('fredbloggs');

 $spiraListener->setPassword ('fredbloggs');

 $spiraListener->setProjectId (1);

 $spiraListener->setReleaseId (1);

 $spiraListener->setTestSetId (1);

 // Create a test result and attach the SpiraTest listener

 // object as an observer to it (as well as the default console text listener)

Page 55 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 $result = new PHPUnit_Framework_TestResult;

 $textPrinter = new PHPUnit_TextUI_ResultPrinter;

 $result->addListener($textPrinter);

 $result->addListener($spiraListener);

 // Run the tests and print the results

 $result = $suite->run($result);

 $textPrinter->printResult($result);

 ?>

b) Sample Test Case

<?php

require_once 'PHPUnit/Framework/TestCase.php';

/**

 * Some simple tests using the ability to return results back to SpiraTest

 *

 * @author Inflectra Corporation

 * @version 2.2.0

 *

 */

class SimpleTest extends PHPUnit_Framework_TestCase

{

 protected $fValue1;

 protected $fValue2;

 /**

 * Sets up the unit test

 */

 protected function setUp()

 {

 $this->fValue1= 2;

 $this->fValue2= 3;

 }

 /**

 * Tests the addition of the two values

 */

 public function testAdd__2()

 {

 $result = $this->fValue1 + $this->fValue2;

 // forced failure result == 5

 $this->assertTrue ($result == 6);

 }

 /**

 * Tests division by zero

 */

 /*

 public function testDivideByZero__3()

 {

 $zero = 0;

 $result = 8 / $zero;

 $result++; // avoid warning for not using result

 }

 /**

 * Tests two equal values

 */

 /*

public function testEquals__4()

Page 56 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 {

 $this->assertEquals(12, 12);

 $this->assertEquals(12.0, 12.0);

 $num1 = 12;

 $num2 = 12;

 $this->assertEquals($num1, $num2);

 $this->assertEquals("Size", 12, 13);

 $this->assertEquals("Capacity", 12.0, 11.99, 0.0);

 }

 /**

 * Tests success

 */

 /*

 public function testSuccess__5()

 {

 //Successful test

 $this->assertEquals(12, 12);

 }

}

?>

Firstly, each of the individual test methods is appended with two underscores followed by the ID of the

corresponding test case in SpiraTest. So for example testSuccess() is now testSuccess__5() as it maps

to test case TC00005 inside SpiraTest.

Second, in the Test Suite class, the PHPUnit TestResult object is passed an additional PHPUnit listener

(in addition to the default one). This special listener class intercepts the results from the test run during

execution and uses it to generate the web-service messages that are sent to SpiraTest to communicate

the test results.

The following attributes need to be set on the instance of the SpiraListener_Listener() object so that the

extension can access the SpiraTest repository:

 baseUrl – The base URL used to access your instance of SpiraTest (e.g.

http://myserver/SpiraTest). It should include the protocol (e.g. http/https), the server-name, the

port number (if not 80/443) and the virtual directory (if there is one).

 userName - A valid username for the instance of SpiraTest that has access to the project

specified above

 password - A valid password for the user specified above

 projectId – The ID of the project inside SpiraTest (this can be found on the project homepage in

the “Project Overview” section)

 releaseId - The ID of the SpiraTest release to associate the test run with. This can be found on

the releases list page (click on the Planning > Releases tab). If you don’t want to associate the

test run with a specific release, just use the value -1 to indicate N/A.

 testSetId - The ID of the SpiraTest test set to associate the test run with. This can be found on

the test set list page (click on the Testing > Test Sets tab). If you don’t want to associate the test

run with a specific test set, just use the value -1 to indicate N/A.

The SpiraListener_Listener class can also be called with the parameters as the constructor arguments:

//Create a new SpiraTest listener instance and specify the connection info

 $spiraListener = new SpiraListener_Listener (

'http://localhost/SpiraTeam',

 'fredbloggs',

 'fredbloggs',

http://myserver/SpiraTest

Page 57 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 1,

 1,

 1);

You can also attach the listener to the class declaratively by adding it to the phpunit.xml configuration

file instead of adding through PHP code:

<phpunit>

 <listeners>

 <listener class="SpiraListener_Listener" file="../SpiraListener/Listener.php">

 <arguments>

 <!-- URL -->

 <string>http://localhost/SpiraTeam</string>

 <!-- User Name -->

 <string>fredbloggs</string>

 <!-- User Password -->

 <string>fredbloggs</string>

 <!-- Project ID -->

 <integer>1</integer>

 <!-- Release ID -->

 <integer>1</integer>

 <!-- Test Set ID -->

 <integer>1</integer>

 </arguments>

 </listener>

 </listeners>

 <testsuites>

 <testsuite name="Sample Suite">

 <directory>.</directory>

 <file>./SampleSuite.php</file>

 </testsuite>

 </testsuites>

</phpunit>

Now all you need to do is save your code, launch PHPUnit, run the test suite as you would normally do,

and when you view the test cases in SpiraTest, you should see a PHPUnit automated test run displayed

in the list of executed test runs:

Clicking on one of the PHPUnit test runs will bring up a screen that provides information regarding what

PHPUnit test method failed, what the error was, together with the associated code stack-trace:

Page 58 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Congratulations… You are now able to run PHPUnit automated tests and have the results be recorded

within SpiraTest. The sample test suite SampleSuite.php and sample test case SampleTest.php are

provided with the installation in the Samples subfolder.

Page 59 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

12. Integrating UnitJS & NodeJS

UnitJS is an assertion library for JavaScript, running on Node.js or a web browser. It works with various

test runner and unit testing frameworks, including Mocha, Jasmine, Karma, Protractor, and QUnit.

SpiraTest currently includes a pre-built extension for the MochaJS test runner and our sample code

illustrates it working with UnitJS. However, we supply the source code to the extension, so you can easily

adapt it for other runners such as Jasmine and Protractor.

12.1. Using the SpiraTest MochaJS Reporter

Mocha is a feature-rich JavaScript test framework running on Node.js and in the browser, making

asynchronous testing simple and fun. Mocha tests run serially, allowing for flexible and accurate

reporting, while mapping uncaught exceptions to the correct test cases.

An example UnitJS test running Mocha looks something like:

 var test = require('unit.js');

 describe('Example Test', function(){

 it('sample pass', function(){

 // just for example of tested value

 var example = 'hello world';

 test

 .string(example)

 .startsWith('hello')

 .match(/[a-z]/)

 .given(example = 'you are welcome')

 .string(example)

 .endsWith('welcome')

 .contains('you')

 .when('"example" becomes an object', function(){

 example = {

 message: 'hello world',

 name: 'Nico',

 job: 'developper',

 from: 'France'

 };

 })

 .then('test the "example" object', function(){

 test

 .object(example)

 .hasValue('developper')

 .hasProperty('name')

 .hasProperty('from', 'France')

 .contains({message: 'hello world'})

 ;

 })

 .if(example = 'bad value')

 .error(function(){

Page 60 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

 example.badMethod();

 })

 ;

 });

 it('sample fail', function(){

 // just for example of tested value

 var example = 'not hello world';

 test

 .string(example)

 .startsWith('hello')

 .match(/[a-z]/)

 .given(example = 'you are welcome')

 .string(example)

 .endsWith('welcome')

 .contains('you')

 .when('"example" becomes an object', function(){

 example = {

 message: 'hello world',

 name: 'Nico',

 job: 'developper',

 from: 'France'

 };

 })

 .then('test the "example" object', function(){

 test

 .object(example)

 .hasValue('developper')

 .hasProperty('name')

 .hasProperty('from', 'France')

 .contains({message: 'hello world'})

 ;

 })

 .if(example = 'bad value')

 .error(function(){

 example.badMethod();

 })

 ;

 });

 });

In this sample, we have one test suite “Example Test” that has two tests – “sample pass” and “sample

fail” inside it. When you run this test using Mocha using the command line:

node ./node_modules/mocha/bin/mocha .\test\example2.js

You get the following:

Page 61 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

What we want is to have this test suite report back against a matching test case in SpiraTest.

To do that we need to download and unzip the UnitJS-MochaJS-Reporter.zip file from the Inflectra

website and extract the contents to the same location as your test framework. The reporter subfolder

contains two NodeJS modules:

• SpiraReporter.js – this contains the Mocha custom reporter used for sending the results to

SpiraTest

• SpiraClient.js – this contains the JavaScript module that sends a test result back to SpiraTest. It

is used by SpiraReporter.js but can also be used directly in your code if you want to report back

results without using Mocha.

To use this custom reporter with your Mocha test framework, you simply need to do these two things:

1. Add the reporter name to the command line used to invoke Mocha

2. Add some configuration code to your UnitJS test suite to tell Mocha how to connect to your

instance of SpiraTest.

The first part is very straightforward, just add the Reporter to your Mocha command line:

node ./node_modules/mocha/bin/mocha .\test\example2.js --reporter .\reporter\SpiraReporter

For the second part, you need to add the following code to your test suite at the top:

 var SpiraReporter = require('../reporter/SpiraReporter.js');

 //set the SpiraTest options

 global.spiraOptions = {

 projectId: 1,

 testCaseId: 4,

 releaseId: 1,

 testSetId: null,

 login: 'fredbloggs',

 apiKey: '{7A05FD06-83C3-4436-B37F-51BCF0060483}',

 protocol: 'http',

 host: '127.0.0.1',

 vdir: 'spira'

 };

The first line simply adds a reference to the SpiraTest Mocha reporter module.

Page 62 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

The second line defines the connection and test case information used for reporting back to SpiraTest.

Here’s what you need to put in each of the required configuration options:

• protocol – this needs to be set to either “http” or “https” depending on how you connect to

SpiraTest

• host – this needs to be the name or IP address of the host running SpiraTest. For cloud

customers, it will be something like mycompany.spiraservice.net

• port – this is usually 80 for http and 443 for https unless you are running SpiraTest on a custom

port

• vdir – this is the name of any path used after the hostname. For example, if your URL is

https://demo.spiraservice.net/mysite then the vdir would be “mysite”. If your URL is just

https://mycompany.spiraservice.net then you can leave the vdir blank or just not set a value for it.

• login – this should be a login that has access to the project in SpiraTest with permissions to

create test runs.

• apiKey – this should be the API Key (also known as the RSS Token) for the login specified

• projectId – this should be the numeric ID of the project that the test case belongs to (e.g. if the

project is PR56 just use 56)

• testCaseId – this should be the numeric ID of the test case that you want this Mocha test suite to

report against (e.g. if the test case in question is TC23 just use 23)

In addition, there are two optional configuration parameters you can use:

• releaseId – If you would like the recorded test run to be reported against a specific release,

iteration or phase in SpiraTest, you need to specify the ID of the release in question (e.g. for

release RL18 just use 18)

• testSetId - If you would like the recorded test run to be reported against a specific test set in

SpiraTest, you need to specify the ID of the test set in question (e.g. for test set TX35 just use 35)

With those values set, when you run the test suite using the command line:

node ./node_modules/mocha/bin/mocha .\test\example2.js --reporter .\reporter\SpiraReporter

The results of the test suite will be displayed inside the Mocha console:

When you login to SpiraTest and view the test case being executed, you will now see the automated test

runs reported back from Mocha:

https://demo.spiraservice.net/mysite
https://mycompany.spiraservice.net/

Page 63 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Clicking on one of the MochaJS Reporter test runs will bring up a screen that provides the detailed test

run report from Mocha:

The Console Output section gives more detailed information:

Congratulations… You are now able to run UnitJS automated tests using Mocha and the SpiraTest

custom reporter and have the results be recorded within SpiraTest. The sample test suites example.js

and example2.js are provided with the installation.

Page 64 of 65 © Copyright 2006-2018, Inflectra Corporation This document contains Inflectra proprietary information

Legal Notices

This publication is provided as is without warranty of any kind, either express or implied, including, but not

limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically

added to the information contained herein; these changes will be incorporated in new editions of the

publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or

program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.

Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date

understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot

be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that

may result from following our recommendations.

SpiraTest®, SpiraPlan®, SpiraTeam® and Inflectra® are registered trademarks of Inflectra Corporation in

the United States of America and other countries. Microsoft®, Windows®, Explorer® and Microsoft Project®

are registered trademarks of Microsoft Corporation. QuickTest Pro® is a registered trademark of Hewlett-

Packard Development Company, L.P. All other trademarks and product names are property of their

respective holders.

Please send comments and questions to:

Technical Publications

Inflectra Corporation

8121 Georgia Ave, Suite 504

Silver Spring, MD 20910-4957

U.S.A.

support@inflectra.com

mailto:support@inflectra.com

