
Inflectra White Paper Series: Testing

Software Testing 
Methodologies

10 Top Things to Look for in a Software 
Testing Tool

1. manage your project’s requirements, test cases, bugs, and issues in 
one integrated environment

2. can manage, schedule, and execute manual and automated tests

3. open architecture that lets you integrate with different testing tools

4. flexibility to use third-party requirements-management and de-
fect-tracking tools when needed

5. supports templates, tests, and parameterized data-driven testing

6. works across a range of platforms and devices, including mobile

7. fully customizable workflows and configurable field values

8. rich dashboards of key information that drilldown to the source data

9. customizable reporting available in a variety of different formats

10. end-to-end traceability from requirements to tests to defects.

Why Choose SpiraTeam as Your Software 
Testing Tool?

SpiraTest® manages your project’s requirements, test cases, bugs and 
issues in one integrated environment, with full traceability throughout 
the software testing lifecycle.

• SpiraTest is a complete, out-of-the-box quality management plat-
form, with requirements management, test case management and 
bug tracking fully integrated from day one

• SpiraTest makes the managing and tracking of your testing easy, it 
allows you to quickly configure different test plans for the differ-
ent hardware/software combinations and make sure that all of the 
requirements and test cases have been fully tested on them

• SpiraTest is an open, extensible platform, with a rich library of 
add-ons and extensions that let SpiraTest integrate with all of the 
most popular unit, functional and load testing tools on the market

• SpiraTest comes with a powerful set of customizable dashboards 
that consolidate all of the most importing testing and QA metrics 
onto a single page, so that you can make real-time decisions.

Visit us at www.inflectra.com for a free trial
Or get in touch with us: sales@inflectra.com, 1-866-572-5878 or +1 202-558-6885 (international)

Copyright 2006-2017, Inflectra Corporation

As many users, projects, tests, 
releases, items, API calls as you 
want. All pricing is based on 
concurrent users.

Our one goal is to help you 
succeed. We care deeply about 
giving you the best quality service 
and support you’ve ever had. 

Flexible options to make your 
life easier. Use on desktop or 
mobile; your servers or our cloud, 
sensible add-ons, fairly priced.

Inflectra: Software Built For You



What Are Software Testing 
Methodologies?
Software testing methodologies are the different approaches 
and ways of ensuring that a software application in particu-
lar is fully tested. Software testing methodologies encompass 
everything from unit testing individual modules, integration 
testing an entire system to specialized forms of testing, 
such as security and performance.

Importance of Testing Methodologies
As software applications get ever more complex and inter-
twined and with the large number of different platforms and 
devices that need to get tested, it is more important than 
ever to have a robust testing methodology. The more robust 
a testing system, the easier is to ensure that software prod-
ucts/systems being developed have been fully tested, meet 
their specified requirements and can successfully operate in 
all the anticipated environments with the required usability 
and security.

Functional Testing
The functional testing part of a testing methodology is 
typically broken down into four components - unit testing, 
integration testing, system testing and acceptance testing 
– usually executed in this order. Each of them is described 
below:

• Unit Testing - this refers to testing of individual soft-
ware modules or components that make up an applica-
tion or system. These tests are usually written by the 
developers of the module and in a test-driven-devel-
opment methodology (such as Agile, Scrum or XP) they 
are actually written before the module is created as part 
of the specification. Each module function is tested by 
a specific unit test fixture written in the same program-
ming language as the module.

• Integration Testing - these test the different modules/
components that have been successfully unit tested 
when integrated together to perform specific tasks and 
activities (also known as scenario testing). This testing 
is usually done with a combination of automated func-
tional tests and manual testing depending on how easy 
it is to create automated tests for specific integrated 
components.

• System Testing - this involves testing the entire system 
for errors and bugs. This test is carried out by interfac-
ing the hardware and software components of the entire 
system (that have been previously unit tested and 
integration tested), and then testing it as a whole. This 
testing is listed under the black-box testing method, 
where the software is checked for user-expected work-
ing conditions as well as potential exception and edge 
conditions.

Testing Practices

Test Automation
Testing is one of the greatest consumers of manpower in 
software development projects. Anything that can reduce 
this manual effort is going to seriously reduce the cost 
of overall development. Test automation saves time and 
effort because, unlike some project activities, it is repeated, 
sometimes frequently, so you would do well to consider test 
management tools with in-built support for automation. If 
you plan to use an XUnit testing framework such as TestNG, 
NUnit and JUnit, make sure your test management tool has 
an integration to the one(s) you have chosen.

When reviewing test management tools with some built-in 
test automation, look for the ability to manage test scripts 
as well as schedule and launch tests both locally and on 
remote hosts to help with remote testing. If the test tool can 
pass parameters to your test cases, whether they are manu-
al or automated tests, then score it bonus marks!

Take away: If you plan on using test automation, integrate it 
with test management.

Exploratory Testing
The problem with planned testing is that it needs to be 
predictive. Planned functionality can, of course, be anticipat-
ed and tests created to verify it, but testing for the unex-
pected or testing to ensure there is no additional, unwanted 
functionality, is much harder to plan for. Sometimes the 
best technique is to simply allow the test engineer to see 
where his or her instinct leads. Exploratory testing does not 
advocate arbitrary or ad hoc behavior on the part of the 
tester, but promotes less structured, experience driven test-
ing which changes and grows as it is performed. It is also 
a technique to be used in addition to scripted testing, not 
in place of it. Consequently, the capabilities required from a 
test management tool for the support of exploratory test-
ing are rather different from those of planned and scripted 
testing.

Look for tools that provide a means to track exactly what 
the tester does so that the conditions can be reproduced 
should a defect be discovered or in case it seems that the 
test should become part of the scripted test set. Capturing 
key strokes, screen shots and user comments provides a 
good way to integrate exploratory testing with scripted test-
ing in a controlled way, especially when it comes to adding 
new tests to future regression testing. If the tool is also able 
to provide comparative metrics of scripted versus explor-
atory testing, it can help you determine the effectiveness of 
each and where best to put additional test effort.

Take away: Explore the options that support exploratory 
testing and integrate that with formal testing.

• Acceptance Testing - The acceptance testing is the 
final phase of functional software testing and involves 
making sure that all the product/project requirements 
have been met and that the end-users and customers 
have tested the system to make sure it operates as 
expected and meets all their defined requirements.

Non-Functional Testing
In most testing methodologies, functional testing involves 
testing the application against the business requirements. 
Functional testing is done using the functional specifica-
tions provided by the client or by using the design speci-
fications, such as use cases provided by the design team.

On the other hand, non-functional testing involves testing 
the application against the non-functional requirements, 
which typically involve measuring/testing the application 
against defined technical qualities (also known as the ‘-il-
ities’ because they all end in ‘-ility), for example: vulner-
ability, scalability, usability. Some examples of non-func-
tional testing are described below:

• Performance, Load, Stress Testing - There are several 
different types of performance testing in most testing 
methodologies, for example: performance testing is 
measuring how a system behaves under an increas-
ing load (both numbers of users and data volumes), 
load testing is verifying that the system can operate 
at the required response times when subjected to its 
expected load, and stress testing is finding the failure 
point(s) in the system when the tested load exceeds 
that which it can support.

• Security, Vulnerability Testing - Previously, security 

was something that was tested after-the-fact. With 
the rise in cyber-crime and the awareness of the 
risks associated with software vulnerabilities, appli-
cation security is something that should be designed 
and developed at the same time as the business 
functionality. Security testing tests the software for 
confidentiality, integrity, authentication, availability, 
and non-repudiation. Individual tests are conducted 
to prevent any unauthorized access to the software.

• Usability Testing - The usability testing part of a 
testing methodology looks at the end-user usability 
aspect of the software. The ease with which a user 
can access the product forms the main testing point. 
Usability testing looks at five aspects of testing: 
learnability, efficiency, satisfaction, memorability, and 
errors.

• Compatibility Testing - The compatibility testing 
refers to testing that the product or application is 
compatible with all the specified operating systems, 
hardware platforms, web browsers, mobile devic-
es, and other designed third-party programs (e.g. 
browser plugins). Compatibility tests check that the 
product works as expected across all the different 
hardware/software combinations and that all func-
tionality is consistently supported.


